电力市场环境下,精准的短期负荷预测可以保障电网安全稳定运行,但电价的实时波动增加了负荷变化的复杂性,加大了预测难度。针对这一问题,采用最大信息系数法分析电价及历史负荷与当前时刻负荷的相关性,为预测模型输入特征的确定提供依...电力市场环境下,精准的短期负荷预测可以保障电网安全稳定运行,但电价的实时波动增加了负荷变化的复杂性,加大了预测难度。针对这一问题,采用最大信息系数法分析电价及历史负荷与当前时刻负荷的相关性,为预测模型输入特征的确定提供依据。在此基础上,提出了基于Attention-LSTM (attention long short-term memory,Attention-LSTM)网络的短期负荷预测模型。该模型充分利用负荷的时序特性,并采用Attention机制突出对负荷预测起到关键作用的输入特征。以澳大利亚某地区真实数据为算例,分别应用Attention-LSTM模型与其他模型进行仿真实验。结果表明,所提方法在预测精度和算法鲁棒性方面均优于其他模型。展开更多
针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输...针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输入特征的筛选;综合考虑负荷峰值序列的长短期自相关性和输入特征与负荷峰值的不同程度相关性,结合Attention机制和双向长短时记忆(bidirectional long short-term memory,BiLSTM)神经网络建立负荷峰值预测模型。在负荷标幺曲线预测中,通过误差倒数法组合相似日和相邻日,建立负荷标幺曲线预测模型;针对预测偏差的非平稳特征,利用自适应噪声的完全集成经验模态分解和BiLSTM网络建立误差预测模型,对曲线形状进行修正。应用中国北方某城市的区域电网负荷数据为算例,验证了所提模型的有效性。展开更多
为了提高电力市场环境下短期负荷预测精度,利用互信息法和电价负荷曲线验证电价与负荷的关系,考虑电价对负荷预测的影响,从而提出一种基于Attention-LSTM(attention long short-term memory,Attention-LSTM)网络的短期负荷预测模型。首...为了提高电力市场环境下短期负荷预测精度,利用互信息法和电价负荷曲线验证电价与负荷的关系,考虑电价对负荷预测的影响,从而提出一种基于Attention-LSTM(attention long short-term memory,Attention-LSTM)网络的短期负荷预测模型。首先将考虑电价波动因素的特征向量从输入层放入LSTM模型隐藏层中进行训练,然后将训练后得到的特征向量作为Attention层的输入,生成权重向量,最后将特征向量和权重向量合并得到新的向量,通过全连接层的训练得到预测结果值。运用江苏某地市数据进行实验验证,结果表明所提方法具有更高的负荷预测精度。展开更多
预测居民用电相当于预测一个多元时间序列.针对多个传感器信号的特定窗口能够利用预测模型提取不同的特征来预测用电量.然而,由于时间序列内部特征存在着不规则的模式,包括电力属性之间隐藏的相关性,使得负荷预测准确率不高.为了提取复...预测居民用电相当于预测一个多元时间序列.针对多个传感器信号的特定窗口能够利用预测模型提取不同的特征来预测用电量.然而,由于时间序列内部特征存在着不规则的模式,包括电力属性之间隐藏的相关性,使得负荷预测准确率不高.为了提取复杂的不规则电力模式,选择性地学习时空特征以减少电力属性间的平移方差,本文提出了一种基于多头注意力的卷积循环神经网络深度学习模型.相较于单纯的时间序列模型,该模型利用卷积和加权机制对电力属性和有功功率间的局部相关性进行建模.它利用softmax函数和点积运算的注意力分数来模拟电力需求的瞬态和脉冲特性,有效地对瞬时脉冲功耗进行预测.在美国加州大学欧文分校(University of California,Irvine,UCI)家庭用电数据集共2075259个时间序列上的实验表明,所提出的模型与现有方法相比,准确率得到了较大提升.展开更多
文摘电力市场环境下,精准的短期负荷预测可以保障电网安全稳定运行,但电价的实时波动增加了负荷变化的复杂性,加大了预测难度。针对这一问题,采用最大信息系数法分析电价及历史负荷与当前时刻负荷的相关性,为预测模型输入特征的确定提供依据。在此基础上,提出了基于Attention-LSTM (attention long short-term memory,Attention-LSTM)网络的短期负荷预测模型。该模型充分利用负荷的时序特性,并采用Attention机制突出对负荷预测起到关键作用的输入特征。以澳大利亚某地区真实数据为算例,分别应用Attention-LSTM模型与其他模型进行仿真实验。结果表明,所提方法在预测精度和算法鲁棒性方面均优于其他模型。
文摘针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输入特征的筛选;综合考虑负荷峰值序列的长短期自相关性和输入特征与负荷峰值的不同程度相关性,结合Attention机制和双向长短时记忆(bidirectional long short-term memory,BiLSTM)神经网络建立负荷峰值预测模型。在负荷标幺曲线预测中,通过误差倒数法组合相似日和相邻日,建立负荷标幺曲线预测模型;针对预测偏差的非平稳特征,利用自适应噪声的完全集成经验模态分解和BiLSTM网络建立误差预测模型,对曲线形状进行修正。应用中国北方某城市的区域电网负荷数据为算例,验证了所提模型的有效性。
文摘为了提高电力市场环境下短期负荷预测精度,利用互信息法和电价负荷曲线验证电价与负荷的关系,考虑电价对负荷预测的影响,从而提出一种基于Attention-LSTM(attention long short-term memory,Attention-LSTM)网络的短期负荷预测模型。首先将考虑电价波动因素的特征向量从输入层放入LSTM模型隐藏层中进行训练,然后将训练后得到的特征向量作为Attention层的输入,生成权重向量,最后将特征向量和权重向量合并得到新的向量,通过全连接层的训练得到预测结果值。运用江苏某地市数据进行实验验证,结果表明所提方法具有更高的负荷预测精度。
文摘预测居民用电相当于预测一个多元时间序列.针对多个传感器信号的特定窗口能够利用预测模型提取不同的特征来预测用电量.然而,由于时间序列内部特征存在着不规则的模式,包括电力属性之间隐藏的相关性,使得负荷预测准确率不高.为了提取复杂的不规则电力模式,选择性地学习时空特征以减少电力属性间的平移方差,本文提出了一种基于多头注意力的卷积循环神经网络深度学习模型.相较于单纯的时间序列模型,该模型利用卷积和加权机制对电力属性和有功功率间的局部相关性进行建模.它利用softmax函数和点积运算的注意力分数来模拟电力需求的瞬态和脉冲特性,有效地对瞬时脉冲功耗进行预测.在美国加州大学欧文分校(University of California,Irvine,UCI)家庭用电数据集共2075259个时间序列上的实验表明,所提出的模型与现有方法相比,准确率得到了较大提升.