Atmospheric ducting has a significant impact on electromagnetic wave propagation.Radio signals that are trapped and guided by the atmospheric duct can travel a much longer distance over the horizon with lower attenuat...Atmospheric ducting has a significant impact on electromagnetic wave propagation.Radio signals that are trapped and guided by the atmospheric duct can travel a much longer distance over the horizon with lower attenuation since the signal power does not spread isotropically through the atmosphere.Atmospheric ducting brings both challenges and opportunities to wireless communications.On one hand,the signals propagating in the atmospheric duct may interfere with a receiver far away as remote co-channel interference.On the other hand,a point-to-point link can be established directly through the atmospheric duct to enable beyond line-of-sight communications.In this article,the formation of the atmospheric duct and its effects on radio wave propagation are first overviewed.Then solutions and standardization activities in the 3rd Generation Partnership Project(3GPP)to mitigate atmospheric duct induced remote interference are presented.Finally,the applications and design challenges of atmospheric duct enabled beyond line-of-sight communications are reviewed and future research directions are suggested.展开更多
With the rapid development of the fifth-generation(5 G)mobile communication technology,the application of each frequency band has reached the extreme,causing mutual interference between different modules.Hence,there i...With the rapid development of the fifth-generation(5 G)mobile communication technology,the application of each frequency band has reached the extreme,causing mutual interference between different modules.Hence,there is a requirement for detecting filtering and preventing interference.In the troposphere,over-the-horizon propagation occurs in atmospheric ducts and turbulent media.The effects of both ducting and turbulence can increase the probability of occurrence of long-distance co-channel interference(CCI),in turn,severely affecting the key performance indicators such as system access,handover and drop.In the 5 G era,to ensure communication channels and information security,CCI must be reduced.This paper introduces a scattering parabolic equation algorithm for calculating signal propagation in atmospheric ducts on irregular terrain boundaries.It combines Hitney’s radio physical optical model and Wagner’s nonuniform turbulent scattering model for calculating the tropospheric scattering in an evaporation duct or a surface-based duct.The new model proposes a tropospheric scattering parabolic equation algorithm for various tropospheric duct environments.Finally,as a specific case,the topographical boundaries between several cities in the East China Plain were considered,and the over-the-horizon propagation loss was simulated for various ducting and turbulent environments.The simulation results were used to evaluate whether CCI would occur between cities in a specific environment.展开更多
基金This work was supported by the Industrial Internet Research Institute(Jinan)of Beijing University of Posts and Telecommunications under Grant 201915001
文摘Atmospheric ducting has a significant impact on electromagnetic wave propagation.Radio signals that are trapped and guided by the atmospheric duct can travel a much longer distance over the horizon with lower attenuation since the signal power does not spread isotropically through the atmosphere.Atmospheric ducting brings both challenges and opportunities to wireless communications.On one hand,the signals propagating in the atmospheric duct may interfere with a receiver far away as remote co-channel interference.On the other hand,a point-to-point link can be established directly through the atmospheric duct to enable beyond line-of-sight communications.In this article,the formation of the atmospheric duct and its effects on radio wave propagation are first overviewed.Then solutions and standardization activities in the 3rd Generation Partnership Project(3GPP)to mitigate atmospheric duct induced remote interference are presented.Finally,the applications and design challenges of atmospheric duct enabled beyond line-of-sight communications are reviewed and future research directions are suggested.
基金supported by the National Natural Science Foundation of China(Grant Nos.62005205,62071359,and 61775175)Natural Science Basic Research Program of Shaanxi,China(Grant No.2020JQ-331)。
文摘With the rapid development of the fifth-generation(5 G)mobile communication technology,the application of each frequency band has reached the extreme,causing mutual interference between different modules.Hence,there is a requirement for detecting filtering and preventing interference.In the troposphere,over-the-horizon propagation occurs in atmospheric ducts and turbulent media.The effects of both ducting and turbulence can increase the probability of occurrence of long-distance co-channel interference(CCI),in turn,severely affecting the key performance indicators such as system access,handover and drop.In the 5 G era,to ensure communication channels and information security,CCI must be reduced.This paper introduces a scattering parabolic equation algorithm for calculating signal propagation in atmospheric ducts on irregular terrain boundaries.It combines Hitney’s radio physical optical model and Wagner’s nonuniform turbulent scattering model for calculating the tropospheric scattering in an evaporation duct or a surface-based duct.The new model proposes a tropospheric scattering parabolic equation algorithm for various tropospheric duct environments.Finally,as a specific case,the topographical boundaries between several cities in the East China Plain were considered,and the over-the-horizon propagation loss was simulated for various ducting and turbulent environments.The simulation results were used to evaluate whether CCI would occur between cities in a specific environment.