Sorption by biodegradable polyesters of several aromatic chemicals as model compounds for hydrophobic organic contaminants (HOCs) was studied. The biodegradable polyesters used were poly(butylene succinate), poly(3-hy...Sorption by biodegradable polyesters of several aromatic chemicals as model compounds for hydrophobic organic contaminants (HOCs) was studied. The biodegradable polyesters used were poly(butylene succinate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(ε-caprolactone), poly(butylene succinate/ terephthalate), and poly(L-lactic acid). Petrochemical plastics, low-density polyethylene and polyethylene terephtalate, were used for comparison. The target HOCs were biphenyl, bisphenol-A, dibenzofuran, diethylstilbestrol, nonyl-phenol, and chlorophenols. The treatment of the HOC solutions with each of the biodegradable polyesters resulted in the nearly complete removal of the chemicals by sorption from the aqueous phase, except for the case of poly(L-lactic acid). Low-density polyethylene adsorbed biphenyl and dibenzofuran selectively, and polyethylene terephtalate did not adsorb any of the HOCs. The adsorptive interaction between the plastics and the HOCs might be related to both the glass transition temperature of the former and the nature of the latter as defined by the Fujita's inorganicity/organicity ratio. The toxic effect of 3,5-dichlorophenol on bacte-rial growth in liquid culture was removed by the addition of a biodegradable polyester. These results provide a basis for the applicability of the biodegradable plastics as the adsorbents for the removal of HOCs from aquatic environments.展开更多
文摘Sorption by biodegradable polyesters of several aromatic chemicals as model compounds for hydrophobic organic contaminants (HOCs) was studied. The biodegradable polyesters used were poly(butylene succinate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(ε-caprolactone), poly(butylene succinate/ terephthalate), and poly(L-lactic acid). Petrochemical plastics, low-density polyethylene and polyethylene terephtalate, were used for comparison. The target HOCs were biphenyl, bisphenol-A, dibenzofuran, diethylstilbestrol, nonyl-phenol, and chlorophenols. The treatment of the HOC solutions with each of the biodegradable polyesters resulted in the nearly complete removal of the chemicals by sorption from the aqueous phase, except for the case of poly(L-lactic acid). Low-density polyethylene adsorbed biphenyl and dibenzofuran selectively, and polyethylene terephtalate did not adsorb any of the HOCs. The adsorptive interaction between the plastics and the HOCs might be related to both the glass transition temperature of the former and the nature of the latter as defined by the Fujita's inorganicity/organicity ratio. The toxic effect of 3,5-dichlorophenol on bacte-rial growth in liquid culture was removed by the addition of a biodegradable polyester. These results provide a basis for the applicability of the biodegradable plastics as the adsorbents for the removal of HOCs from aquatic environments.