Micro-arc oxidation(MAO)coating with outstanding adhesion strength to Mg alloys has attracted more and more attention.However,owing to the porous structure,aggressive ions easily invaded the MAO/substrate interface th...Micro-arc oxidation(MAO)coating with outstanding adhesion strength to Mg alloys has attracted more and more attention.However,owing to the porous structure,aggressive ions easily invaded the MAO/substrate interface through the through pores,limiting long-term corrosion resistance.Therefore,a dense and biocompatible tantalum oxide(Ta2O5)nanofilm was deposited on MAO coated Mg alloy AZ31 through atomic layer deposition(ALD)technique to seal the micropores and regulate the degradation rate.Surface micrography,chemical compositions and crystallographic structure were characterized using FE-SEM,EDS,XPS and XRD.The corrosion resistance of all samples was evaluated through electrochemical and hydrogen evolution tests.Results revealed that the Ta2O5 film mainly existed in the form of amorphousness.Moreover,uniform deposition of Ta2O5 film and effective sealing of micropores and microcracks in MAO coating were achieved.The current density(icorr)of the composite coating decreased three orders of magnitude than that of the substrate and MAO coating,improving corrosion resistance.Besides,the formation and corrosion resistance mechanisms of the composite coating were proposed.展开更多
Wire arc additive manufacturing(WAAM)is a novel manufacturing technique by which high strength metal components can be fabricated layer by layer using an electric arc as the heat source and metal wire as feedstock,and...Wire arc additive manufacturing(WAAM)is a novel manufacturing technique by which high strength metal components can be fabricated layer by layer using an electric arc as the heat source and metal wire as feedstock,and offers the potential to produce large dimensional structures at much higher build rate and minimum waste of raw material.In the present work,a cold metal transfer(CMT)based additive manufacturing was carried out and the effect of deposition rate on the microstructure and mechanical properties of WAAM Ti-6Al-4V components was investigated.The microstructure of WAAM components showed similar microstructural morphology in all deposition conditions.When the deposition rate increased from 1.63 to 2.23 kg/h,the ultimate tensile strength(UTS)decreased from 984.6 MPa to 899.2 MPa and the micro-hardness showed a scattered but clear decline trend.展开更多
Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aero...Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aerospace,automotive,and other transport industries.However,their widespread application is hindered by their low formability at room temperature due to limited slip systems.Cast Mg-alloys have low mechanical properties due to the presence of casting defects such as porosity and anisotropy in addition to the high scrap.While casting methods benefit from established process optimization techniques for these problems,additive manufacturing methods are increasingly replacing casting methods in Mg alloys as they provide more precise control over the microstructure and allow specific grain orientations,potentially enabling easier optimization of anisotropy properties in certain applications.Although metal additive manufacturing(MAM)technology also results in some manufacturing defects such as inhomogeneous microstructural evolution and porosity and additively manufactured Mg alloy parts exhibit lower properties than the wrought parts,they in general exhibit superior properties than the cast counterparts.Thus,MAM is a promising technique to produce Mg alloy parts.Directed energy deposition processes,particularly wire arc directed energy deposition(WA-DED),have emerged as an advantageous additive manufacturing(AM)technique for metallic materials including magnesium alloys,offering advantages such as high deposition rates,improved material efficiency,and reduced production costs compared to subtractive processes.However,the inherent challenges associated with magnesium,such as its high reactivity and susceptibility to oxidation,pose unique hurdles in the application of this technology.This review paper delves into the progress made in the application of DED technology to Mg-alloys,its challenges,and prospects.Furthermore,the predominant imperfections,notably inhomogeneous microstructure evolution and porosity,ob展开更多
As a new direct metal prototyping technology,the hybrid plasma and laser deposition manufacturing (PLDM) is proposed in this paper. In order to figure out the characteristics of plasma arc beam and mould in the PLDM p...As a new direct metal prototyping technology,the hybrid plasma and laser deposition manufacturing (PLDM) is proposed in this paper. In order to figure out the characteristics of plasma arc beam and mould in the PLDM process of high temperature alloy, the high speed CCD camera is used to obtain the picture around the plasma arc. Afterwards the sketch of picture is clearly obtained. And the effect of laser parameter, such as average power, pulse width, pulse repetition frequency and the angle between laser beam and plasma arc beam on the plasma arc appearance, is studied experimentally. The results show that the modality of plasma arc beam is markedly influenced by laser beam. And the improvements of shape precision and surface state of the layer deposited by PLDM are confirmed.展开更多
Realizing improved strength in composite metallic materials remains a challenge using conventional welding and joining systems due to the generation and development of brittle intermetallic compounds caused by complex...Realizing improved strength in composite metallic materials remains a challenge using conventional welding and joining systems due to the generation and development of brittle intermetallic compounds caused by complex thermal profiles during solidification.Here,wire arc additive manufacturing(WAAM)process was used to fabricate a steel-nickel structural component,whose average tensile strength of 634 MPa significantly exceeded that of feedstock materials(steel,537 MPa and nickel,455 MPa),which has not been reported previously.The as-fabricated sample exhibited hierarchically structural heterogeneity due to the interweaving deposition strategy.The improved mechanical response during tensile testing was due to the inter-locking microstructure forming a strong bond at the interface and solid solutions strengthening from the intermixing of the Fe and Ni increased the interface strength,beyond the sum of parts.The research offers a new route for producing high-quality steel-nickel dissimilar structures and widens the design opportunities of monolithic components,with site-specific properties,for specific structural or functional applications.展开更多
Cold metal transfer plus pulse(C+P)arc was applied in the additive manufacturing of 4043 Al alloy parts.Parameters in the manufacturing of the parts were investigated.The properties and microstructure of the parts wer...Cold metal transfer plus pulse(C+P)arc was applied in the additive manufacturing of 4043 Al alloy parts.Parameters in the manufacturing of the parts were investigated.The properties and microstructure of the parts were also characterized.Experimental results showed that welding at a speed of 8 mm/s and a wire feeding speed of 4.0 m/min was suitable to manufacture thin-walled parts,and the reciprocating scanning method could be adopted to manufacture thick-walled parts.The thin-walled parts of the C+P mode had fewer pores than those of the cold metal transfer(CMT)mode.The thin-and thick-walled parts of the C+P mode showed maximum tensile strengths of 172 and 178 MPa,respectively.Hardness decreased at the interface and in the coarse dendrite and increased in the refined grain area.展开更多
基金This work was supported by the National Natural Science Foundation of China(51571134 and 51601108)the SDUST Research Fund(2014TDJH104).
文摘Micro-arc oxidation(MAO)coating with outstanding adhesion strength to Mg alloys has attracted more and more attention.However,owing to the porous structure,aggressive ions easily invaded the MAO/substrate interface through the through pores,limiting long-term corrosion resistance.Therefore,a dense and biocompatible tantalum oxide(Ta2O5)nanofilm was deposited on MAO coated Mg alloy AZ31 through atomic layer deposition(ALD)technique to seal the micropores and regulate the degradation rate.Surface micrography,chemical compositions and crystallographic structure were characterized using FE-SEM,EDS,XPS and XRD.The corrosion resistance of all samples was evaluated through electrochemical and hydrogen evolution tests.Results revealed that the Ta2O5 film mainly existed in the form of amorphousness.Moreover,uniform deposition of Ta2O5 film and effective sealing of micropores and microcracks in MAO coating were achieved.The current density(icorr)of the composite coating decreased three orders of magnitude than that of the substrate and MAO coating,improving corrosion resistance.Besides,the formation and corrosion resistance mechanisms of the composite coating were proposed.
基金Projects(52075317,51905333)supported by the National Natural Science Foundation of ChinaProject(IEC\NSFC\181278)supported by the Royal Society through International Exchanges 2018 Cost Share(China)Scheme+2 种基金Project(19YF1418100)supported by Shanghai Sailing Program,ChinaProjects(19511106400,19511106402)supported by Shanghai Science and Technology Committee Innovation,ChinaProject(19030501300)supported by Shanghai Local Colleges and Universities Capacity Building Special Plan,China。
文摘Wire arc additive manufacturing(WAAM)is a novel manufacturing technique by which high strength metal components can be fabricated layer by layer using an electric arc as the heat source and metal wire as feedstock,and offers the potential to produce large dimensional structures at much higher build rate and minimum waste of raw material.In the present work,a cold metal transfer(CMT)based additive manufacturing was carried out and the effect of deposition rate on the microstructure and mechanical properties of WAAM Ti-6Al-4V components was investigated.The microstructure of WAAM components showed similar microstructural morphology in all deposition conditions.When the deposition rate increased from 1.63 to 2.23 kg/h,the ultimate tensile strength(UTS)decreased from 984.6 MPa to 899.2 MPa and the micro-hardness showed a scattered but clear decline trend.
文摘Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aerospace,automotive,and other transport industries.However,their widespread application is hindered by their low formability at room temperature due to limited slip systems.Cast Mg-alloys have low mechanical properties due to the presence of casting defects such as porosity and anisotropy in addition to the high scrap.While casting methods benefit from established process optimization techniques for these problems,additive manufacturing methods are increasingly replacing casting methods in Mg alloys as they provide more precise control over the microstructure and allow specific grain orientations,potentially enabling easier optimization of anisotropy properties in certain applications.Although metal additive manufacturing(MAM)technology also results in some manufacturing defects such as inhomogeneous microstructural evolution and porosity and additively manufactured Mg alloy parts exhibit lower properties than the wrought parts,they in general exhibit superior properties than the cast counterparts.Thus,MAM is a promising technique to produce Mg alloy parts.Directed energy deposition processes,particularly wire arc directed energy deposition(WA-DED),have emerged as an advantageous additive manufacturing(AM)technique for metallic materials including magnesium alloys,offering advantages such as high deposition rates,improved material efficiency,and reduced production costs compared to subtractive processes.However,the inherent challenges associated with magnesium,such as its high reactivity and susceptibility to oxidation,pose unique hurdles in the application of this technology.This review paper delves into the progress made in the application of DED technology to Mg-alloys,its challenges,and prospects.Furthermore,the predominant imperfections,notably inhomogeneous microstructure evolution and porosity,ob
基金This work was supported by the National Natural Science Foundation of China (Grant No. 50474053)the State High-Technology Development Program of China (Grant No. 2003AA421150).
文摘As a new direct metal prototyping technology,the hybrid plasma and laser deposition manufacturing (PLDM) is proposed in this paper. In order to figure out the characteristics of plasma arc beam and mould in the PLDM process of high temperature alloy, the high speed CCD camera is used to obtain the picture around the plasma arc. Afterwards the sketch of picture is clearly obtained. And the effect of laser parameter, such as average power, pulse width, pulse repetition frequency and the angle between laser beam and plasma arc beam on the plasma arc appearance, is studied experimentally. The results show that the modality of plasma arc beam is markedly influenced by laser beam. And the improvements of shape precision and surface state of the layer deposited by PLDM are confirmed.
基金carried out at the Welding Engineering Research Group,University of Wollongong,and it was supported by China Scholarship Council(No.201506680056)the National Natural Science Foundation of China(No.51805085)。
文摘Realizing improved strength in composite metallic materials remains a challenge using conventional welding and joining systems due to the generation and development of brittle intermetallic compounds caused by complex thermal profiles during solidification.Here,wire arc additive manufacturing(WAAM)process was used to fabricate a steel-nickel structural component,whose average tensile strength of 634 MPa significantly exceeded that of feedstock materials(steel,537 MPa and nickel,455 MPa),which has not been reported previously.The as-fabricated sample exhibited hierarchically structural heterogeneity due to the interweaving deposition strategy.The improved mechanical response during tensile testing was due to the inter-locking microstructure forming a strong bond at the interface and solid solutions strengthening from the intermixing of the Fe and Ni increased the interface strength,beyond the sum of parts.The research offers a new route for producing high-quality steel-nickel dissimilar structures and widens the design opportunities of monolithic components,with site-specific properties,for specific structural or functional applications.
基金the National Natural Science Foundation of China(Nos.51605276 and51905333)Shanghai Sailing Program(No.19YF1418100)+2 种基金Shanghai Science and Technology Committee Innovation Grant(Nos.17JC1400600 and 17JC1400601)Karamay Science and Technology Major Project(No.2018ZD002B)Aid for Xinjiang Science and Technology Project(No2019E0235)。
文摘Cold metal transfer plus pulse(C+P)arc was applied in the additive manufacturing of 4043 Al alloy parts.Parameters in the manufacturing of the parts were investigated.The properties and microstructure of the parts were also characterized.Experimental results showed that welding at a speed of 8 mm/s and a wire feeding speed of 4.0 m/min was suitable to manufacture thin-walled parts,and the reciprocating scanning method could be adopted to manufacture thick-walled parts.The thin-walled parts of the C+P mode had fewer pores than those of the cold metal transfer(CMT)mode.The thin-and thick-walled parts of the C+P mode showed maximum tensile strengths of 172 and 178 MPa,respectively.Hardness decreased at the interface and in the coarse dendrite and increased in the refined grain area.