A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulatio...A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulation and continuity in space, the cavities between adjacent yarns and the actual cross-section geometry of the yarn. Based on the laminate theory, the elastic properties of 3D angle-interlock woven ceramic composites are predicted. Different numbers of interlaced wefts have almost the same elastic moduli. The thickness of ceramic matrix has little effect on elastic moduli. When the undulation ratio increases longitudinal modulus decreases and the other Young's moduli increase. Good agreement between theoretical predictions and experimental results demonstrates the feasibility of the proposed model in analyzing the elastic properties of 3D angle-interlock woven ceramic composites. The results of this paper verify the fact that the method of analyzing polyester matrix composites is suitable for woven ceramic composites.展开更多
This paper reports the structural effects of three-dimensional(3-D)angle-interlock woven composite(3DAWC)undergoing three-point bending cyclic loading from experimental and finite element analysis(FEA)approaches.In ex...This paper reports the structural effects of three-dimensional(3-D)angle-interlock woven composite(3DAWC)undergoing three-point bending cyclic loading from experimental and finite element analysis(FEA)approaches.In experiment,the fatigue tests were conducted to measure the bending deflection and to observe the damage morphologies.By the FEA approach,a micro-structural unit-cell model of the 3DAWC was established at the yarn level to simulate the fatigue damage.The stress degradation at the loading condition of constant deformation amplitude was calculated to show the degradation of mechanical properties.In addition,the stress distribution,fatigue damage evolution and critical damage regions were also obtained to qualitatively reveal the structural effects and damage mechanisms of the 3DAWC subjected to three-point bending cyclic loading.展开更多
基金Project supported by the National Natural Science Foundation of China (No.90405015)
文摘A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulation and continuity in space, the cavities between adjacent yarns and the actual cross-section geometry of the yarn. Based on the laminate theory, the elastic properties of 3D angle-interlock woven ceramic composites are predicted. Different numbers of interlaced wefts have almost the same elastic moduli. The thickness of ceramic matrix has little effect on elastic moduli. When the undulation ratio increases longitudinal modulus decreases and the other Young's moduli increase. Good agreement between theoretical predictions and experimental results demonstrates the feasibility of the proposed model in analyzing the elastic properties of 3D angle-interlock woven ceramic composites. The results of this paper verify the fact that the method of analyzing polyester matrix composites is suitable for woven ceramic composites.
基金supported by the National Natural Science Foundation of China(Grant Nos.11072058 and 11272087)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201056)+2 种基金Shanghai Rising-Star Program(Grant No.11QH1400100)the Fundamental Research Funds for the Central Universities of ChinaSpecial Excellent Ph.D International Visit Program by Donghua University(Grant No.102552011003)
文摘This paper reports the structural effects of three-dimensional(3-D)angle-interlock woven composite(3DAWC)undergoing three-point bending cyclic loading from experimental and finite element analysis(FEA)approaches.In experiment,the fatigue tests were conducted to measure the bending deflection and to observe the damage morphologies.By the FEA approach,a micro-structural unit-cell model of the 3DAWC was established at the yarn level to simulate the fatigue damage.The stress degradation at the loading condition of constant deformation amplitude was calculated to show the degradation of mechanical properties.In addition,the stress distribution,fatigue damage evolution and critical damage regions were also obtained to qualitatively reveal the structural effects and damage mechanisms of the 3DAWC subjected to three-point bending cyclic loading.