In order to restore a degraded alkaline grassland, the local government implemented a large restoration project using fences in Changling county, Jilin province, China, in 2000. Grazing was excluded from the protected...In order to restore a degraded alkaline grassland, the local government implemented a large restoration project using fences in Changling county, Jilin province, China, in 2000. Grazing was excluded from the protected area, whereas the grazed area was continuously grazed at 8.5 dry sheep equivalent(DSE)/hm2. In the current research, soil and plant samples were taken from grazed and fenced areas to examine changes in vegetation and soil properties in 2005, 2006 and 2008. Results showed that vegetation characteristics and soil properties improved significantly in the fenced area compared with the grazed area. In the protected area the vegetation cover, height and above- and belowground biomass increased significantly. Soil pH, electrical conductivity and bulk density decreased significantly, but soil organic carbon and total nitrogen concentration increased greatly in the protected area. By comparing the vegetation and soil characteristics with pre-degraded grassland, we found that vegetation can recover 6 years after fencing, and soil pH can be restored 8 years after fencing. However, the restoration of soil organic carbon, total nitrogen and total phosphorus concentrations needed 16, 30 and 19 years, respectively. It is recommended that the stocking rate should be reduced to 1/3 of the current carrying capacity, or that a grazing regime of 1-year of grazing followed by a 2-year rest is adopted to sustain the current status of vegetation and soil resources. However, if N fertilizer is applied, the rest period could be shortened, depending on the rate of application.展开更多
基于头孢噻呋碱性条件降解产物荧光强度更强,吐温-80能提高其降解产物荧光强度,建立测定猪肌肉及肾中头孢噻呋残留的同步荧光分光光度法。优化了降解条件(加热时间、氢氧化钠浓度与体积),讨论了缓冲溶液、表面活性剂种类及用量对降解产...基于头孢噻呋碱性条件降解产物荧光强度更强,吐温-80能提高其降解产物荧光强度,建立测定猪肌肉及肾中头孢噻呋残留的同步荧光分光光度法。优化了降解条件(加热时间、氢氧化钠浓度与体积),讨论了缓冲溶液、表面活性剂种类及用量对降解产物荧光强度的影响。结果发现:4 m L 2.0 mol/L氢氧化钠溶液,加热150 min,加3 m L柠檬酸-柠檬酸钠缓冲液(p H 4.2)和6 m L吐温-80溶液(0.023 3 mol/L),在1 cm荧光比色皿中,于发射波长λem 415 nm^550 nm内,△λ为85 nm条件下扫描测定,440.0 nm处读出荧光强度。应用加乙腈沉淀蛋白的方法对动物性食品进行预处理。在0.625μg/m L^62.5μg/m L范围内,头孢噻呋浓度与降解产物荧光强度线性关系良好,相关系数为0.999 3,检出限为270μg/kg。加标水平在144μg/kg^2 160μg/kg范围内,回收率为85.09%~87.83%,RSD为0.93%~1.54%(n=3)。建立的新方法可用于动物食品中头孢噻呋残留量检测。展开更多
The apparent degradation rate constant of fluticasone propionate(FLT) in 0.1 M NaOH:methanol=1:1 at 37 °C was previously reported to be 0.169 ± 0.003 h^(-1), and four degradation products(products 1–4) were...The apparent degradation rate constant of fluticasone propionate(FLT) in 0.1 M NaOH:methanol=1:1 at 37 °C was previously reported to be 0.169 ± 0.003 h^(-1), and four degradation products(products 1–4) were observed in the solution. The aims of the present study were to assess the degradation rates of FLT in other alkaline solutions and clarify the chemical structures of the four degradation products in order to obtain basic data for designing an enema for inflammatory bowel disease. The apparent degradation rate constants in 0.05 M NaOH and 0.1 M NaOH:CH_3CN=1:1 were 0.472 ± 0.013 h^(-1) and 0.154 ± 0.000 h^(-1)(n=3), respectively. The chemical structures of products 1–4 in 0.1 M NaOH:methanol=1:1 were revealed by nuclear magnetic resonance(NMR)and mass spectrometry data. The chemical structure of products 2 was that the 17-position of the thioester moiety of FLT was substituted by a carboxylic acid. The degradation product in 0.1 M NaOH:CH_3CN=1:1 was found to be product 2 based on ~1H NMR data. The degradation product in 0.05 M NaOH was considered to be product 2 based on the retention time of HPLC. These results are useful for detecting the degradation products of FLT by enzymes of the intestinal bacterial flora in the large intestine after dosing FLT as an enema.展开更多
Recently,considerable attention has been paid to the installation of renewable energy capacity to mitigate global CO_(2) emissions.H_(2) produced using water electrolysis and renewable energy is regarded as a clean en...Recently,considerable attention has been paid to the installation of renewable energy capacity to mitigate global CO_(2) emissions.H_(2) produced using water electrolysis and renewable energy is regarded as a clean energy carrier,generating electricity without CO_(2) emissions,called‘Green H 2’.In this paper,a prognostics and health man-agement model for an alkaline water electrolyzer was proposed to predict the load voltage on the electrolyzer to obtain the state of health information.The prognostics and health management model was developed by training historical operating data via machine learning models,support vector machine and gaussian process regression,showing the root mean square error of 1.28×10^(−3) and 8.03×10^(−6).In addition,a techno-economic analysis was performed for a green H_(2) production system,composed of 1 MW of photovoltaic plant and 1 MW of alkaline water electrolyzer,to provide economic insights and feasibility of the system.A levelized cost of H_(2) of$6.89 kgH_(2)−1 was calculated and the potential to reach the levelized cost of H_(2) from steam methane reforming with carbon capture and storage was shown by considering the learning rate of the photovoltaic module and elec-trolyzer.Finally,the replacement of the alkaline water electrolyzer at around 10 years was preferred to increase the net present value from the green H_(2) production system when capital expenditure and replacement cost are low enough.展开更多
基金supported by the National Key Basic Research Program of China (2011CB403203)the Strategic Science and Technology Guide Project of Chinese Academy of Sciences (XDA05050401)
文摘In order to restore a degraded alkaline grassland, the local government implemented a large restoration project using fences in Changling county, Jilin province, China, in 2000. Grazing was excluded from the protected area, whereas the grazed area was continuously grazed at 8.5 dry sheep equivalent(DSE)/hm2. In the current research, soil and plant samples were taken from grazed and fenced areas to examine changes in vegetation and soil properties in 2005, 2006 and 2008. Results showed that vegetation characteristics and soil properties improved significantly in the fenced area compared with the grazed area. In the protected area the vegetation cover, height and above- and belowground biomass increased significantly. Soil pH, electrical conductivity and bulk density decreased significantly, but soil organic carbon and total nitrogen concentration increased greatly in the protected area. By comparing the vegetation and soil characteristics with pre-degraded grassland, we found that vegetation can recover 6 years after fencing, and soil pH can be restored 8 years after fencing. However, the restoration of soil organic carbon, total nitrogen and total phosphorus concentrations needed 16, 30 and 19 years, respectively. It is recommended that the stocking rate should be reduced to 1/3 of the current carrying capacity, or that a grazing regime of 1-year of grazing followed by a 2-year rest is adopted to sustain the current status of vegetation and soil resources. However, if N fertilizer is applied, the rest period could be shortened, depending on the rate of application.
文摘基于头孢噻呋碱性条件降解产物荧光强度更强,吐温-80能提高其降解产物荧光强度,建立测定猪肌肉及肾中头孢噻呋残留的同步荧光分光光度法。优化了降解条件(加热时间、氢氧化钠浓度与体积),讨论了缓冲溶液、表面活性剂种类及用量对降解产物荧光强度的影响。结果发现:4 m L 2.0 mol/L氢氧化钠溶液,加热150 min,加3 m L柠檬酸-柠檬酸钠缓冲液(p H 4.2)和6 m L吐温-80溶液(0.023 3 mol/L),在1 cm荧光比色皿中,于发射波长λem 415 nm^550 nm内,△λ为85 nm条件下扫描测定,440.0 nm处读出荧光强度。应用加乙腈沉淀蛋白的方法对动物性食品进行预处理。在0.625μg/m L^62.5μg/m L范围内,头孢噻呋浓度与降解产物荧光强度线性关系良好,相关系数为0.999 3,检出限为270μg/kg。加标水平在144μg/kg^2 160μg/kg范围内,回收率为85.09%~87.83%,RSD为0.93%~1.54%(n=3)。建立的新方法可用于动物食品中头孢噻呋残留量检测。
文摘The apparent degradation rate constant of fluticasone propionate(FLT) in 0.1 M NaOH:methanol=1:1 at 37 °C was previously reported to be 0.169 ± 0.003 h^(-1), and four degradation products(products 1–4) were observed in the solution. The aims of the present study were to assess the degradation rates of FLT in other alkaline solutions and clarify the chemical structures of the four degradation products in order to obtain basic data for designing an enema for inflammatory bowel disease. The apparent degradation rate constants in 0.05 M NaOH and 0.1 M NaOH:CH_3CN=1:1 were 0.472 ± 0.013 h^(-1) and 0.154 ± 0.000 h^(-1)(n=3), respectively. The chemical structures of products 1–4 in 0.1 M NaOH:methanol=1:1 were revealed by nuclear magnetic resonance(NMR)and mass spectrometry data. The chemical structure of products 2 was that the 17-position of the thioester moiety of FLT was substituted by a carboxylic acid. The degradation product in 0.1 M NaOH:CH_3CN=1:1 was found to be product 2 based on ~1H NMR data. The degradation product in 0.05 M NaOH was considered to be product 2 based on the retention time of HPLC. These results are useful for detecting the degradation products of FLT by enzymes of the intestinal bacterial flora in the large intestine after dosing FLT as an enema.
基金This research was supported by the Hydrogen Energy Innovation Technology Development Program of the National Research Foundation of Korea(NRF)funded by the Korean government(Ministry of Science and ICT(MSIT))(NRF-2019M3E6A1064290)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(NRF-2019M1A2A2065614).
文摘Recently,considerable attention has been paid to the installation of renewable energy capacity to mitigate global CO_(2) emissions.H_(2) produced using water electrolysis and renewable energy is regarded as a clean energy carrier,generating electricity without CO_(2) emissions,called‘Green H 2’.In this paper,a prognostics and health man-agement model for an alkaline water electrolyzer was proposed to predict the load voltage on the electrolyzer to obtain the state of health information.The prognostics and health management model was developed by training historical operating data via machine learning models,support vector machine and gaussian process regression,showing the root mean square error of 1.28×10^(−3) and 8.03×10^(−6).In addition,a techno-economic analysis was performed for a green H_(2) production system,composed of 1 MW of photovoltaic plant and 1 MW of alkaline water electrolyzer,to provide economic insights and feasibility of the system.A levelized cost of H_(2) of$6.89 kgH_(2)−1 was calculated and the potential to reach the levelized cost of H_(2) from steam methane reforming with carbon capture and storage was shown by considering the learning rate of the photovoltaic module and elec-trolyzer.Finally,the replacement of the alkaline water electrolyzer at around 10 years was preferred to increase the net present value from the green H_(2) production system when capital expenditure and replacement cost are low enough.