Rapid technological improvements in biomaterials,computer-aided design(CAD)and manufacturing(CAM)have endorsed clear aligner therapy(CAT)as a mainstay of orthodontic treatment,and the materials employed for aligner fa...Rapid technological improvements in biomaterials,computer-aided design(CAD)and manufacturing(CAM)have endorsed clear aligner therapy(CAT)as a mainstay of orthodontic treatment,and the materials employed for aligner fabrication play an all-important role in determining the clinical performance of clear aligners.This narrative review has attempted to comprehensively encompass the entire gamut of materials currently used for the fabrication of clear aligners and elucidate their characteristics that are crucial in determining their performance in an oral environment.Historical developments and current protocols in aligner fabrication,features of contemporary bioactive materials,and emerging trends related to CAT are discussed.Advances in aligner material chemistry and engineering possess the potential to bring about radical transformations in the therapeutic applications of CAT;in the absence of which,clear aligners would continue to underperform clinically,due to their inherent biomechanical constraints.Finally,while innovations in aligner materials such as shape memory polymers,direct three-dimensional(3D)printed clear aligners and bioactive materials combined with clear aligner materials are essential to further advance the applications of CAT;increased awareness of environmental responsibilities among aligner manufacturers,aligner prescribing clinicians and aligner users is essential for better alignment of our climate change goals towards a sustainable planet.展开更多
Maxillary protrusion combined with mandibular retraction is a highly prevalent but extremely complex maxillofacial deformity that can have a serious negative impact on patients’facial aesthetics and mental health.The...Maxillary protrusion combined with mandibular retraction is a highly prevalent but extremely complex maxillofacial deformity that can have a serious negative impact on patients’facial aesthetics and mental health.The traditional orthodontic treatment strategy often involves extracting 4 first premolars and conventional fixed techniques,combined with mini-implant screws,to retract the anterior teeth and improve facial protrusion.In recent years,an invisible orthodontic technique,without brackets,has become increasingly popular.However,while an invisible aligner has been used in some cases with reasonable results,there remain significant challenges in achieving a perfect outcome.This case report presents an adolescent patient with bimaxillary protrusion and mandibular retrognathia.Based on the characteristics of the invisible aligners and the growth characteristics of the adolescent’s teeth and jawbone,we designed precise three-dimensional tooth movement and corresponding resistance/over-correction for each tooth,while utilizing the patient’s jawbone growth potential to promote rapid development of the mandible,accurately and efficiently correcting bimaxillary protrusion and skeletal mandibular retrognathia.The patient’s facial aesthetics,especially the lateral morphology,have been greatly improved,and various aesthetic indicators have also shown significant changes,and to the patient’s great benefit,invasive mini-implant screws were not used during the treatment.This case highlights the advantages of using invisible aligners in adolescent maxillary protrusion combined with mandibular retraction patients.Furthermore,comprehensive and accurate design combined with good application of growth potential can also enable invisible orthodontic technology to achieve perfect treatment effects in tooth extractions,providing clinical guidance for orthodontists.展开更多
With the increasing demand for beauty and health,clear aligners(CAs)have been widely applied among patients with malocclusion.However,patients treated with CAs also face some potential complications,such as deminerali...With the increasing demand for beauty and health,clear aligners(CAs)have been widely applied among patients with malocclusion.However,patients treated with CAs also face some potential complications,such as demineralization,dental caries,and periodontal diseases.In addition,some patients have additional needs to improve their quality of life,such as bleaching teeth.In order to prevent or solve these problems,the modification of CAs is a promising method because their extensive long-term contact with tooth surfaces makes them ideal devices for implementing adjuvant medical functions.In this review,we discuss various advanced CAs with medical functions based on the clinical needs of patients.As far as we know,the additional functions of CAs mainly include antibacterial,remineralization,whitening,and accelerating tooth movement.These functions are achieved by two major pathways,the combination of CAs with drugs/biomaterials and increasing the capacity or affinity of drugs.In addition,we discuss the current limitations of in vitro experiments which are designed to explore the effectiveness and properties of novel CAs,and the challenges of bringing a multifunctional appliance from proposal to clinical application.At the end of this review,we provide insights into the broader prospects for the improvement of CAs.展开更多
文摘Rapid technological improvements in biomaterials,computer-aided design(CAD)and manufacturing(CAM)have endorsed clear aligner therapy(CAT)as a mainstay of orthodontic treatment,and the materials employed for aligner fabrication play an all-important role in determining the clinical performance of clear aligners.This narrative review has attempted to comprehensively encompass the entire gamut of materials currently used for the fabrication of clear aligners and elucidate their characteristics that are crucial in determining their performance in an oral environment.Historical developments and current protocols in aligner fabrication,features of contemporary bioactive materials,and emerging trends related to CAT are discussed.Advances in aligner material chemistry and engineering possess the potential to bring about radical transformations in the therapeutic applications of CAT;in the absence of which,clear aligners would continue to underperform clinically,due to their inherent biomechanical constraints.Finally,while innovations in aligner materials such as shape memory polymers,direct three-dimensional(3D)printed clear aligners and bioactive materials combined with clear aligner materials are essential to further advance the applications of CAT;increased awareness of environmental responsibilities among aligner manufacturers,aligner prescribing clinicians and aligner users is essential for better alignment of our climate change goals towards a sustainable planet.
基金supported by grants from the Interdisciplinary Program of Wuhan National High Magnetic Field Center(No.WHMFC202207)China Oral Health Foundation(No.A2023-009).
文摘Maxillary protrusion combined with mandibular retraction is a highly prevalent but extremely complex maxillofacial deformity that can have a serious negative impact on patients’facial aesthetics and mental health.The traditional orthodontic treatment strategy often involves extracting 4 first premolars and conventional fixed techniques,combined with mini-implant screws,to retract the anterior teeth and improve facial protrusion.In recent years,an invisible orthodontic technique,without brackets,has become increasingly popular.However,while an invisible aligner has been used in some cases with reasonable results,there remain significant challenges in achieving a perfect outcome.This case report presents an adolescent patient with bimaxillary protrusion and mandibular retrognathia.Based on the characteristics of the invisible aligners and the growth characteristics of the adolescent’s teeth and jawbone,we designed precise three-dimensional tooth movement and corresponding resistance/over-correction for each tooth,while utilizing the patient’s jawbone growth potential to promote rapid development of the mandible,accurately and efficiently correcting bimaxillary protrusion and skeletal mandibular retrognathia.The patient’s facial aesthetics,especially the lateral morphology,have been greatly improved,and various aesthetic indicators have also shown significant changes,and to the patient’s great benefit,invasive mini-implant screws were not used during the treatment.This case highlights the advantages of using invisible aligners in adolescent maxillary protrusion combined with mandibular retraction patients.Furthermore,comprehensive and accurate design combined with good application of growth potential can also enable invisible orthodontic technology to achieve perfect treatment effects in tooth extractions,providing clinical guidance for orthodontists.
基金supported by Postdoctoral Science Foundation of China(Nos.2018M630883 and 2019T120688)Hubei Province Chinese Medicine Research Project(No.ZY2023Q015)Natural Science Foundation of Hubei Province(No.2023AFB665)。
文摘With the increasing demand for beauty and health,clear aligners(CAs)have been widely applied among patients with malocclusion.However,patients treated with CAs also face some potential complications,such as demineralization,dental caries,and periodontal diseases.In addition,some patients have additional needs to improve their quality of life,such as bleaching teeth.In order to prevent or solve these problems,the modification of CAs is a promising method because their extensive long-term contact with tooth surfaces makes them ideal devices for implementing adjuvant medical functions.In this review,we discuss various advanced CAs with medical functions based on the clinical needs of patients.As far as we know,the additional functions of CAs mainly include antibacterial,remineralization,whitening,and accelerating tooth movement.These functions are achieved by two major pathways,the combination of CAs with drugs/biomaterials and increasing the capacity or affinity of drugs.In addition,we discuss the current limitations of in vitro experiments which are designed to explore the effectiveness and properties of novel CAs,and the challenges of bringing a multifunctional appliance from proposal to clinical application.At the end of this review,we provide insights into the broader prospects for the improvement of CAs.