In South China, the Wuqiangxi Formation of the Banxi Group and its equivalents underlie the early Cryogenian (Sturtian) glacial deposits but their thickness varies from <200 m to >2000 m. In the Guzhang section ...In South China, the Wuqiangxi Formation of the Banxi Group and its equivalents underlie the early Cryogenian (Sturtian) glacial deposits but their thickness varies from <200 m to >2000 m. In the Guzhang section of western Hunan, the Wuqiangxi Formation is only 152 m thick, and an ash bed 58 m below the glacial diamictite yielded a SHRIMP U-Pb age of 809.3±8.4 Ma. In contrast, 90 km south of the Guzhang section towards the basin in Zhijiang area where the Wuqiangxi Formation is ~2200 m thick, an age of 725±10 Ma has been reported from the top of this unit, 300 m below the glacial diamictite. These ages provide new evidence for the regional stratigraphic correlation across the Nanhua basin, and suggest unusually large (>2 km) stratigraphic erosion potentially associated with the Sturtian glaciation in South China. The magnitude of erosion may imply significant uplifting and tectonotopography at the onset of the Sturtian glaciation.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 40621002, 40572019)Ministry of Education of China (Grant Nos. IRT0546, NCET-04-0727, "111" Project B07011)the National Science Foundation of USA (Grant No. EAR 0745825)
文摘In South China, the Wuqiangxi Formation of the Banxi Group and its equivalents underlie the early Cryogenian (Sturtian) glacial deposits but their thickness varies from <200 m to >2000 m. In the Guzhang section of western Hunan, the Wuqiangxi Formation is only 152 m thick, and an ash bed 58 m below the glacial diamictite yielded a SHRIMP U-Pb age of 809.3±8.4 Ma. In contrast, 90 km south of the Guzhang section towards the basin in Zhijiang area where the Wuqiangxi Formation is ~2200 m thick, an age of 725±10 Ma has been reported from the top of this unit, 300 m below the glacial diamictite. These ages provide new evidence for the regional stratigraphic correlation across the Nanhua basin, and suggest unusually large (>2 km) stratigraphic erosion potentially associated with the Sturtian glaciation in South China. The magnitude of erosion may imply significant uplifting and tectonotopography at the onset of the Sturtian glaciation.