以疏水缔合聚合物为代表的抗盐型聚合物在油田提高采收率实践中获得了良好增油降水效果。但是矿场实践中往往只重视聚合物溶液视黏度,而忽视聚合物溶液中聚合物分子聚集体与储层孔隙和非均质性间的匹配关系。以SZ36-1油田储层地质特征...以疏水缔合聚合物为代表的抗盐型聚合物在油田提高采收率实践中获得了良好增油降水效果。但是矿场实践中往往只重视聚合物溶液视黏度,而忽视聚合物溶液中聚合物分子聚集体与储层孔隙和非均质性间的匹配关系。以SZ36-1油田储层地质特征和流体为研究对象,开展了疏水缔合聚合物缔合程度及其调节方法研究,在此基础上进行了储层非均质性与疏水缔合聚合物缔合程度适应性评价。结果表明,在浓度为1750 mg/L的AP-P4溶液中加入β-环糊精(β-CD),β-CD加量由0增至0.08%时,β-CD/AP-P4体系的黏度由172.1 m Pa·s降至7.7 m Pa·s,聚合物分子线团尺寸由1078.2 nm减至500.1 nm,与之相适应的岩心渗透率极限由1500×10-3μm2降至150×10-3μm2。由此可见,加入β-CD可以调节疏水缔合聚合物溶液中超分子聚集体尺寸及其大小分布,进而改善其与储层岩石孔喉间匹配关系。岩心非均质性不同,与之相适应疏水缔合聚合物缔合程度也不同。只有驱油剂体系与岩心孔喉相匹配时,采收率增幅才能达到最大。展开更多
Through natural partition and clustering analysis,four kinds of flow units were distinguished in Pu53 block,Pucheng Oilfield. Taking the short-term cycle as studying unit,the two-dimensional distribution of each type ...Through natural partition and clustering analysis,four kinds of flow units were distinguished in Pu53 block,Pucheng Oilfield. Taking the short-term cycle as studying unit,the two-dimensional distribution of each type of flow units was forecasted and the short-term cycle was classified into four types based on the two-dimensional characteristics of the flow units. The remaining oil was predicted by conceptual simulation,qualitative analysis and quantitative modeling. The results showed obvious control of the characteristics of reservoir flow units to the remaining oil. E and G units in type I and type II short-term cycles which are distributed continuously in large areas are mostly flooded,while the uncontrolled small isolated G flow unit in type III short-term cycles which were mainly made of F flow unit and F flow unit with continuous distribution become the accumulating place for remaining oil. Thus the development adjustment strategy should optimize the development of small-scale E and G units,strengthen the development of type III short-term cycles,and block out type I short-term cycles. This strategy improves the development of Pu53 block obviously.展开更多
Gas expansion caused by significant exhumation in the Sulige gas field in the Ordos Basin since Late Cretaceous and its effects on hydrocarbon accumulation have been investigated systematically based on comprehensive ...Gas expansion caused by significant exhumation in the Sulige gas field in the Ordos Basin since Late Cretaceous and its effects on hydrocarbon accumulation have been investigated systematically based on comprehensive analysis of geochemical,fluid inclusion and production data.The results indicate that gas volume expansion since the Late Cretaceous was the driving force for adjustment and secondary charging of tight sandstone gas reservoirs in the Sulige gas field of the Ordos Basin.The gas retained in the source rocks expanded in volume,resulting in gas re-expulsion,migration and secondary charging into reservoirs,while the gas volume expansion in the tight reservoirs caused the increase of gas saturation,gas-bearing area and gas column height,which worked together to increase the gas content of the reservoir and bring about large-scale gas accumulation events.The Sulige gas field had experienced a two-stage accumulation process,burial before the end of Early Cretaceous and uplifting since the Late Cretaceous.In the burial stage,natural gas was driven by hydrocarbon generation overpressure to migrate and accumulate,while in the uplifting stage,the gas volume expansion drove internal adjustment inside gas reservoirs and secondary charging to form new reservoirs.On the whole,the gas reservoir adjustment and secondary charging during uplifting stage is more significant in the eastern gas field than that in the west,which is favorable for forming gas-rich area.展开更多
文摘以疏水缔合聚合物为代表的抗盐型聚合物在油田提高采收率实践中获得了良好增油降水效果。但是矿场实践中往往只重视聚合物溶液视黏度,而忽视聚合物溶液中聚合物分子聚集体与储层孔隙和非均质性间的匹配关系。以SZ36-1油田储层地质特征和流体为研究对象,开展了疏水缔合聚合物缔合程度及其调节方法研究,在此基础上进行了储层非均质性与疏水缔合聚合物缔合程度适应性评价。结果表明,在浓度为1750 mg/L的AP-P4溶液中加入β-环糊精(β-CD),β-CD加量由0增至0.08%时,β-CD/AP-P4体系的黏度由172.1 m Pa·s降至7.7 m Pa·s,聚合物分子线团尺寸由1078.2 nm减至500.1 nm,与之相适应的岩心渗透率极限由1500×10-3μm2降至150×10-3μm2。由此可见,加入β-CD可以调节疏水缔合聚合物溶液中超分子聚集体尺寸及其大小分布,进而改善其与储层岩石孔喉间匹配关系。岩心非均质性不同,与之相适应疏水缔合聚合物缔合程度也不同。只有驱油剂体系与岩心孔喉相匹配时,采收率增幅才能达到最大。
基金Supported by the National Natural Science Foundation of China (Grant Nos. 40602013, 40572078)the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20060489002)
文摘Through natural partition and clustering analysis,four kinds of flow units were distinguished in Pu53 block,Pucheng Oilfield. Taking the short-term cycle as studying unit,the two-dimensional distribution of each type of flow units was forecasted and the short-term cycle was classified into four types based on the two-dimensional characteristics of the flow units. The remaining oil was predicted by conceptual simulation,qualitative analysis and quantitative modeling. The results showed obvious control of the characteristics of reservoir flow units to the remaining oil. E and G units in type I and type II short-term cycles which are distributed continuously in large areas are mostly flooded,while the uncontrolled small isolated G flow unit in type III short-term cycles which were mainly made of F flow unit and F flow unit with continuous distribution become the accumulating place for remaining oil. Thus the development adjustment strategy should optimize the development of small-scale E and G units,strengthen the development of type III short-term cycles,and block out type I short-term cycles. This strategy improves the development of Pu53 block obviously.
基金Supported by the National Natural Science Foundation of China(41502132)China National Demonstration Project(2016ZX05050).
文摘Gas expansion caused by significant exhumation in the Sulige gas field in the Ordos Basin since Late Cretaceous and its effects on hydrocarbon accumulation have been investigated systematically based on comprehensive analysis of geochemical,fluid inclusion and production data.The results indicate that gas volume expansion since the Late Cretaceous was the driving force for adjustment and secondary charging of tight sandstone gas reservoirs in the Sulige gas field of the Ordos Basin.The gas retained in the source rocks expanded in volume,resulting in gas re-expulsion,migration and secondary charging into reservoirs,while the gas volume expansion in the tight reservoirs caused the increase of gas saturation,gas-bearing area and gas column height,which worked together to increase the gas content of the reservoir and bring about large-scale gas accumulation events.The Sulige gas field had experienced a two-stage accumulation process,burial before the end of Early Cretaceous and uplifting since the Late Cretaceous.In the burial stage,natural gas was driven by hydrocarbon generation overpressure to migrate and accumulate,while in the uplifting stage,the gas volume expansion drove internal adjustment inside gas reservoirs and secondary charging to form new reservoirs.On the whole,the gas reservoir adjustment and secondary charging during uplifting stage is more significant in the eastern gas field than that in the west,which is favorable for forming gas-rich area.