随着原位透射电子显微技术的不断发展与成熟,在近使役环境中对材料进行高空间与高时间分辨率下的研究得以广泛开展。而环境透射电镜(Environmental transmission electron microscope,E⁃TEM)与材料真实服役环境的一个重要区别在于所引...随着原位透射电子显微技术的不断发展与成熟,在近使役环境中对材料进行高空间与高时间分辨率下的研究得以广泛开展。而环境透射电镜(Environmental transmission electron microscope,E⁃TEM)与材料真实服役环境的一个重要区别在于所引入的环境气氛和样品材料本身都不可避免地受到电子束辐照的影响,因此多数研究都聚焦在如何降低或消除电子束辐照对研究结果的负面干扰。但实际上E⁃TEM中高能电子束可以起到较强的“催化”作用,从而激发出一些原本只有在苛刻条件下才能出现的现象或反应,助力材料改性、新材料合成及相应的微观反应机理的原位研究。本文以近几年作者所在研究团队及合作者利用E⁃TEM中电子束活化CO_(2)和H2气体分子在提升活泼金属耐蚀性、稳定性、辅助陶瓷的室温焊接及样品表面原位清洁等方面的具体应用为例,对电子束促进气固反应、改性材料表面及相关机理进行了介绍,并结合相关实验研究提出了固体表面吸附对电子束诱导气体活化过程的关键作用,更新了之前人们对电子束是通过提高游离态气体反应活性影响气-固间相互作用的认知。展开更多
This study focuses on the effect of ultrafine waste glass powder on cement strength,gas permeability and pore structure.Varying contents were considered,with particle sizes ranging from 2 to 20μm.Moreover,alkali acti...This study focuses on the effect of ultrafine waste glass powder on cement strength,gas permeability and pore structure.Varying contents were considered,with particle sizes ranging from 2 to 20μm.Moreover,alkali activation was considered to ameliorate the reactivity and cementitious properties,which were assessed by using scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),and specific surface area pore size distribution analysis.According to the results,without the addition of alkali activators,the performance of glass powder mortar decreases as the amount of glass powder increases,affecting various aspects such as strength and resistance to gas permeability.Only 5%glass powder mortar demonstrated a compressive strength at 60 days higher than that of the control group.However,adding alkali activator(CaO)during hydration ameliorated the hydration environment,increased the alkalinity of the composite system,activated the reactivity of glass powder,and enhanced the interaction of glass powder and pozzolanic reaction.In general,compared to ordinary cement mortar,alkali-activated glass powder mortar produces more hydration products,showcases elevated density,and exhibits improved gas resistance.Furthermore,alkali-activated glass powder mortar demonstrates an improvement in performance across various aspects as the content increases.At a substitution rate of 15%,the glass powder mortar reaches its optimal levels of strength and resistance to gas permeability,with a compressive strength increase ranging from 28.4%to 34%,and a gas permeation rate reduction between 51.8%and 66.7%.展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
This paper addressed the efect of copper acetate on the combustion characteristics of anthracite depending on the fractional composition of fuel and additive introduction method.Anthracite was impregnated with 5 wt%of...This paper addressed the efect of copper acetate on the combustion characteristics of anthracite depending on the fractional composition of fuel and additive introduction method.Anthracite was impregnated with 5 wt%of Cu(CH_(3)COO)_(2)by mechanical mixing and incipient wetness impregnation.Four anthracite samples of diferent fraction with d<0.1 mm,d=0.1-0.5 mm,d=0.5-1.0 mm,and d=1.0-2.0 mm were compared.According to EDX mapping,incipient wetness impregnation provides a higher dispersion of the additive and its uniform distribution in the sample.The ignition and combustion characteristics of the modifed anthracite samples were studied by thermal analysis and high-speed video recording of the processes in a combustion chamber(at heating medium temperature of 800℃).It was found that copper acetate increases anthracite reactivity,which was evidenced by decreased onset temperature of combustion(ΔT_(i))by 35-190℃and reduced ignition delay time(Δτ_(i))by 2.1-5.4 s.Copper acetate reduces fuel underburning(on average by 70%)in the ash residue of anthracite and decreases the amount of CO and NO_(x)in gas-phase products(on average by 18.5%and 20.8%,respectively).The mechanism for activation of anthracite combustion by copper acetate is proposed.展开更多
Chemical vapor deposition(CVD)using gaseous hydrocarbon sources has shown great promise for large-scale graphene growth,but high growth temperatures(typically 1000℃)require sophisticated and expensive equipment,which...Chemical vapor deposition(CVD)using gaseous hydrocarbon sources has shown great promise for large-scale graphene growth,but high growth temperatures(typically 1000℃)require sophisticated and expensive equipment,which increases graphene production costs.Here,we demonstrate a new approach to produce graphene at low cost from scrap steel sheets treated by thermal evaporation of copper plating,which is a derivative of traditional CVD technology.Without additional carbon sources,graphene film was successfully prepared on copper-coated scrap steel sheets at 820℃.The resulting graphene has few defects and uniform morphology,comparable to CVD graphene grown at 1000℃.Finally,the obtained graphene film is used in combination with an interdigital electrode to detect NO_(2)successfully,showing excellent performance.This technology expands the application of graphene in the manufacture of gas sensing devices and is compatible with traditional microelectronics technology.展开更多
文摘随着原位透射电子显微技术的不断发展与成熟,在近使役环境中对材料进行高空间与高时间分辨率下的研究得以广泛开展。而环境透射电镜(Environmental transmission electron microscope,E⁃TEM)与材料真实服役环境的一个重要区别在于所引入的环境气氛和样品材料本身都不可避免地受到电子束辐照的影响,因此多数研究都聚焦在如何降低或消除电子束辐照对研究结果的负面干扰。但实际上E⁃TEM中高能电子束可以起到较强的“催化”作用,从而激发出一些原本只有在苛刻条件下才能出现的现象或反应,助力材料改性、新材料合成及相应的微观反应机理的原位研究。本文以近几年作者所在研究团队及合作者利用E⁃TEM中电子束活化CO_(2)和H2气体分子在提升活泼金属耐蚀性、稳定性、辅助陶瓷的室温焊接及样品表面原位清洁等方面的具体应用为例,对电子束促进气固反应、改性材料表面及相关机理进行了介绍,并结合相关实验研究提出了固体表面吸附对电子束诱导气体活化过程的关键作用,更新了之前人们对电子束是通过提高游离态气体反应活性影响气-固间相互作用的认知。
基金the National Natural Science Foundation of China(No.51709097).
文摘This study focuses on the effect of ultrafine waste glass powder on cement strength,gas permeability and pore structure.Varying contents were considered,with particle sizes ranging from 2 to 20μm.Moreover,alkali activation was considered to ameliorate the reactivity and cementitious properties,which were assessed by using scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),and specific surface area pore size distribution analysis.According to the results,without the addition of alkali activators,the performance of glass powder mortar decreases as the amount of glass powder increases,affecting various aspects such as strength and resistance to gas permeability.Only 5%glass powder mortar demonstrated a compressive strength at 60 days higher than that of the control group.However,adding alkali activator(CaO)during hydration ameliorated the hydration environment,increased the alkalinity of the composite system,activated the reactivity of glass powder,and enhanced the interaction of glass powder and pozzolanic reaction.In general,compared to ordinary cement mortar,alkali-activated glass powder mortar produces more hydration products,showcases elevated density,and exhibits improved gas resistance.Furthermore,alkali-activated glass powder mortar demonstrates an improvement in performance across various aspects as the content increases.At a substitution rate of 15%,the glass powder mortar reaches its optimal levels of strength and resistance to gas permeability,with a compressive strength increase ranging from 28.4%to 34%,and a gas permeation rate reduction between 51.8%and 66.7%.
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
文摘This paper addressed the efect of copper acetate on the combustion characteristics of anthracite depending on the fractional composition of fuel and additive introduction method.Anthracite was impregnated with 5 wt%of Cu(CH_(3)COO)_(2)by mechanical mixing and incipient wetness impregnation.Four anthracite samples of diferent fraction with d<0.1 mm,d=0.1-0.5 mm,d=0.5-1.0 mm,and d=1.0-2.0 mm were compared.According to EDX mapping,incipient wetness impregnation provides a higher dispersion of the additive and its uniform distribution in the sample.The ignition and combustion characteristics of the modifed anthracite samples were studied by thermal analysis and high-speed video recording of the processes in a combustion chamber(at heating medium temperature of 800℃).It was found that copper acetate increases anthracite reactivity,which was evidenced by decreased onset temperature of combustion(ΔT_(i))by 35-190℃and reduced ignition delay time(Δτ_(i))by 2.1-5.4 s.Copper acetate reduces fuel underburning(on average by 70%)in the ash residue of anthracite and decreases the amount of CO and NO_(x)in gas-phase products(on average by 18.5%and 20.8%,respectively).The mechanism for activation of anthracite combustion by copper acetate is proposed.
基金the National Natural Science Foundation of China(No.52073305)Natural Science Foundation of Shandong Province(No.ZR2020QE048)+1 种基金State Key Laboratory of Heavy Oil Processing(No.SKLHOP202101006)National Defense Science and Technology Innovation Special Zone Project(No.22-05-CXZX-04-04-29).
文摘Chemical vapor deposition(CVD)using gaseous hydrocarbon sources has shown great promise for large-scale graphene growth,but high growth temperatures(typically 1000℃)require sophisticated and expensive equipment,which increases graphene production costs.Here,we demonstrate a new approach to produce graphene at low cost from scrap steel sheets treated by thermal evaporation of copper plating,which is a derivative of traditional CVD technology.Without additional carbon sources,graphene film was successfully prepared on copper-coated scrap steel sheets at 820℃.The resulting graphene has few defects and uniform morphology,comparable to CVD graphene grown at 1000℃.Finally,the obtained graphene film is used in combination with an interdigital electrode to detect NO_(2)successfully,showing excellent performance.This technology expands the application of graphene in the manufacture of gas sensing devices and is compatible with traditional microelectronics technology.