A mixed method for measuring low-frequency acoustic properties of macro-molecular materials is presented. The dynamic mechanical parameters of materials are first measured by using Dynamic Mechanical Thermal Apparatus...A mixed method for measuring low-frequency acoustic properties of macro-molecular materials is presented. The dynamic mechanical parameters of materials are first measured by using Dynamic Mechanical Thermal Apparatus(DMTA) at low frequen-cies,usually less than 100 Hz; then based on the Principles of Time-Temperature Super-position (TTS),these parameters are extended to the frequency range that acousticians are concerned about,usually from hundreds to thousands of hertz; finally the extended dynamic mechanical parameters are transformed into acoustic parameters with the help of acoustic measurement and inverse analysis. To test the feasibility and accuracy,we measure a kind of rubber sample in DMTA and acquire the basic acoustic parameters of the sample by using this method. While applying the basic parameters to calculating characteristics of the sample in acoustic pipe,a reasonable agreement of sound absorp-tion coefficients is obtained between the calculations and measurements in the acoustic pipe.展开更多
This paper presents an experimental investigation on wall vibrations of a pipe due to injection of a uniform bubble cloud into the pipe flow. For different bubble void fractions and averaged bubble sizes, the vibratio...This paper presents an experimental investigation on wall vibrations of a pipe due to injection of a uniform bubble cloud into the pipe flow. For different bubble void fractions and averaged bubble sizes, the vibrations were measured using accelerometers. To understand the underlying physics, the evolution of the vibration spectra along the streamwise direction was examined. Results showed that wall vibrations were greatly enhanced up to 25 dB, compared with no bubble case. The characteristics of the vibration were mainly dependent on void fraction. These vibrations were believed to be caused by two mechanisms: acoustic resonance and normal modes of the bubble cloud. The former, originating from the interaction between the first mode of the bubble cloud and the first acoustic mode of the pipe, persisted along the entire pipe to enhance the vibration over a broad band frequency range, while the later, due to the process of bubble formation, successively decayed in the streamwise direction.展开更多
文摘A mixed method for measuring low-frequency acoustic properties of macro-molecular materials is presented. The dynamic mechanical parameters of materials are first measured by using Dynamic Mechanical Thermal Apparatus(DMTA) at low frequen-cies,usually less than 100 Hz; then based on the Principles of Time-Temperature Super-position (TTS),these parameters are extended to the frequency range that acousticians are concerned about,usually from hundreds to thousands of hertz; finally the extended dynamic mechanical parameters are transformed into acoustic parameters with the help of acoustic measurement and inverse analysis. To test the feasibility and accuracy,we measure a kind of rubber sample in DMTA and acquire the basic acoustic parameters of the sample by using this method. While applying the basic parameters to calculating characteristics of the sample in acoustic pipe,a reasonable agreement of sound absorp-tion coefficients is obtained between the calculations and measurements in the acoustic pipe.
文摘This paper presents an experimental investigation on wall vibrations of a pipe due to injection of a uniform bubble cloud into the pipe flow. For different bubble void fractions and averaged bubble sizes, the vibrations were measured using accelerometers. To understand the underlying physics, the evolution of the vibration spectra along the streamwise direction was examined. Results showed that wall vibrations were greatly enhanced up to 25 dB, compared with no bubble case. The characteristics of the vibration were mainly dependent on void fraction. These vibrations were believed to be caused by two mechanisms: acoustic resonance and normal modes of the bubble cloud. The former, originating from the interaction between the first mode of the bubble cloud and the first acoustic mode of the pipe, persisted along the entire pipe to enhance the vibration over a broad band frequency range, while the later, due to the process of bubble formation, successively decayed in the streamwise direction.