The South China Sea is a hotspot for regional climate research.Over the past 40 years,considerable improvement has been made in the development and utilization of the islands in the South China Sea,leading to a substa...The South China Sea is a hotspot for regional climate research.Over the past 40 years,considerable improvement has been made in the development and utilization of the islands in the South China Sea,leading to a substantial change in the land-use of the islands.However,research on the impact of human development on the local climate of these islands is lacking.This study analyzed the characteristics of local climate changes on the islands in the South China Sea based on data from the Yongxing Island Observation Station and ERA5 re-analysis.Furthermore,the influence of urbanization on the local climate of the South China Sea islands was explored in this study.The findings revealed that the 10-year average temperature in Yongxing Island increased by approximately 1.11℃from 1961 to 2020,and the contribution of island development and urbanization to the local warming rate over 60 years was approximately 36.2%.The linear increasing trend of the annual hot days from 1961–2020 was approximately 14.84 days per decade.The diurnal temperature range exhibited an increasing trend of 0.05℃per decade,whereas the number of cold days decreased by 1.06days per decade.The rapid increase in construction on Yongxing Island from 2005 to 2021 led to a decrease in observed surface wind speed by 0.32 m s^(-1)per decade.Consequently,the number of days with strong winds decreased,whereas the number of days with weak winds increased.Additionally,relative humidity exhibited a rapid decline from 2001 to 2016 and then rebounded.The study also found substantial differences between the ERA5 re-analysis and observation data,particularly in wind speed and relative humidity,indicating that the use of re-analysis data for climate resource assessment and climate change evaluation on island areas may not be feasible.展开更多
Microbes and microbial carbonates in reef-flat and coral community dynamics and submarine geomorphologic features in reef crest and fore reef of Yongxing Island,the Xisha Islands,South China Sea,were studied by means ...Microbes and microbial carbonates in reef-flat and coral community dynamics and submarine geomorphologic features in reef crest and fore reef of Yongxing Island,the Xisha Islands,South China Sea,were studied by means of scuba diving,underwater investigation,and line intercept transect survey.Studies indicate a very high coral mortality with few living corals in the reef flat of Yongxing Island.Moreover,macro algae,sea grass and cyanobacteria are common in reef flat.Microbes and microbially induced carbonates occur in reef flat.Living corals grow mainly in the reef crest and fore reef,but are also declined dramatically.From coast to off shore,the southeast reef flat of Yongxing Island can be divided into beach,inner reef flat,outer reef flat,reef flat front(reef crest and fore reef),and fore-reef slope settings.Sedimentary facies include coast,reef flat,reef crest and fore reef,and fore-reef slope.Reefal carbonate sediments are composed of coral skeletons and framework,coral fragments,bioclasts,and lime mud.With the deterioration of environment and water quality,the coral communities tend to be distributed in the reef crest and fore reef with clean sea water,well circulation and moderate water energy.Reef flat is occupied mainly by the macro algae and Heliopora coerulea communities.The coverage statistics on the reef crest demonstrate that the coverage of Acropora cytherea is more than 28% and represents a dominant species with wave-resistant ecological type.Sedimentary characteristics and geomorphologic features are different between the southeast and northwest reef-flat fronts(reef crest and fore reef) of Yongxing Island.The former shows discontinuously tidal channels in outer reef flat and different dimensional and deep reef ponds in reef crest and fore reef,and the latter presents a typical spur-and-groove system.Microbes(cyanobacteria Lyngbya sp.) occur generally in the inner reef flat and reef ponds of reef crest with restricted water circulation.Widely algae growth indicates a eutrophic environment,and the 展开更多
Black band disease (BBD), characterized by the Cyanobacterial dominated pathogenic consortium, is thought to play a key role in the global decline of the coral reef ecosystems. The present paper originally documents...Black band disease (BBD), characterized by the Cyanobacterial dominated pathogenic consortium, is thought to play a key role in the global decline of the coral reef ecosystems. The present paper originally documents a case of BBD from Yongxing Island (Xisha Islands, South China Sea), and further probes the reasons of this abnormal phenomenon. Prior to 2007, corals at northern reef-flat of Yongxing Isand were in healthy growth. Catastrophic coral mortality occurred between 2007 and 2008. The 16S rRNA gene sequencing and PCR amplification, with universally conserved primers, were applied to detect the conta- gious bacterial community of the microbial mat. The results demonstrated that six bacterial divisions constituted the clone libraries derived from the BBD mat, and that Cyanobacteria are the most diversely represented group that inhabit BBD bacteri- al mats, despite the fact that species in five others divisions (a-Proteobacteria, y-Proteobacteria, Bacteroidetes, Verrucomi- crobia and Actinobacteria) are also consistently diverse within the BBD mats of diseased coral. Other factors such as coral bleaching, typhoons, ocean acidification and crown-of-thorns starfish outbreaks, are not primarily responsible for the coral mortality within such a short time interval. The disaster expansion of BBD associated with Cyanobacterial blooms is a more likely mechanism impacting these coral reefs. Excessive human activity enhances the eutrophication of the marine water of the reefal region and may result in occurrence of the BBD.展开更多
基金National Natural Science Foundation of China(U21A6001,42075059)Specific Research Fund of The Innovation Platform for Academicians of Hainan Province(YSPTZX202143)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)Science and Technology Project of Guangdong Meteorological Service(GRMC2020M29)。
文摘The South China Sea is a hotspot for regional climate research.Over the past 40 years,considerable improvement has been made in the development and utilization of the islands in the South China Sea,leading to a substantial change in the land-use of the islands.However,research on the impact of human development on the local climate of these islands is lacking.This study analyzed the characteristics of local climate changes on the islands in the South China Sea based on data from the Yongxing Island Observation Station and ERA5 re-analysis.Furthermore,the influence of urbanization on the local climate of the South China Sea islands was explored in this study.The findings revealed that the 10-year average temperature in Yongxing Island increased by approximately 1.11℃from 1961 to 2020,and the contribution of island development and urbanization to the local warming rate over 60 years was approximately 36.2%.The linear increasing trend of the annual hot days from 1961–2020 was approximately 14.84 days per decade.The diurnal temperature range exhibited an increasing trend of 0.05℃per decade,whereas the number of cold days decreased by 1.06days per decade.The rapid increase in construction on Yongxing Island from 2005 to 2021 led to a decrease in observed surface wind speed by 0.32 m s^(-1)per decade.Consequently,the number of days with strong winds decreased,whereas the number of days with weak winds increased.Additionally,relative humidity exhibited a rapid decline from 2001 to 2016 and then rebounded.The study also found substantial differences between the ERA5 re-analysis and observation data,particularly in wind speed and relative humidity,indicating that the use of re-analysis data for climate resource assessment and climate change evaluation on island areas may not be feasible.
基金supported by National Natural Science Foundation of China (Grant Nos.40976030,41006029),Projects of International Cooperation and Exchanges of National Natural Science Foundation of China (Grant No.41210104029)Knowledge Innovation Program of Chinese Academy of Sciences (Grant No.SQ201114)
文摘Microbes and microbial carbonates in reef-flat and coral community dynamics and submarine geomorphologic features in reef crest and fore reef of Yongxing Island,the Xisha Islands,South China Sea,were studied by means of scuba diving,underwater investigation,and line intercept transect survey.Studies indicate a very high coral mortality with few living corals in the reef flat of Yongxing Island.Moreover,macro algae,sea grass and cyanobacteria are common in reef flat.Microbes and microbially induced carbonates occur in reef flat.Living corals grow mainly in the reef crest and fore reef,but are also declined dramatically.From coast to off shore,the southeast reef flat of Yongxing Island can be divided into beach,inner reef flat,outer reef flat,reef flat front(reef crest and fore reef),and fore-reef slope settings.Sedimentary facies include coast,reef flat,reef crest and fore reef,and fore-reef slope.Reefal carbonate sediments are composed of coral skeletons and framework,coral fragments,bioclasts,and lime mud.With the deterioration of environment and water quality,the coral communities tend to be distributed in the reef crest and fore reef with clean sea water,well circulation and moderate water energy.Reef flat is occupied mainly by the macro algae and Heliopora coerulea communities.The coverage statistics on the reef crest demonstrate that the coverage of Acropora cytherea is more than 28% and represents a dominant species with wave-resistant ecological type.Sedimentary characteristics and geomorphologic features are different between the southeast and northwest reef-flat fronts(reef crest and fore reef) of Yongxing Island.The former shows discontinuously tidal channels in outer reef flat and different dimensional and deep reef ponds in reef crest and fore reef,and the latter presents a typical spur-and-groove system.Microbes(cyanobacteria Lyngbya sp.) occur generally in the inner reef flat and reef ponds of reef crest with restricted water circulation.Widely algae growth indicates a eutrophic environment,and the
基金supported by National Natural Science Foundation of China(Grant Nos.40976030&41006029)Project of International Cooperation and Exchanges NSFC(Grant No.41210104029)Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.SQ201114)
文摘Black band disease (BBD), characterized by the Cyanobacterial dominated pathogenic consortium, is thought to play a key role in the global decline of the coral reef ecosystems. The present paper originally documents a case of BBD from Yongxing Island (Xisha Islands, South China Sea), and further probes the reasons of this abnormal phenomenon. Prior to 2007, corals at northern reef-flat of Yongxing Isand were in healthy growth. Catastrophic coral mortality occurred between 2007 and 2008. The 16S rRNA gene sequencing and PCR amplification, with universally conserved primers, were applied to detect the conta- gious bacterial community of the microbial mat. The results demonstrated that six bacterial divisions constituted the clone libraries derived from the BBD mat, and that Cyanobacteria are the most diversely represented group that inhabit BBD bacteri- al mats, despite the fact that species in five others divisions (a-Proteobacteria, y-Proteobacteria, Bacteroidetes, Verrucomi- crobia and Actinobacteria) are also consistently diverse within the BBD mats of diseased coral. Other factors such as coral bleaching, typhoons, ocean acidification and crown-of-thorns starfish outbreaks, are not primarily responsible for the coral mortality within such a short time interval. The disaster expansion of BBD associated with Cyanobacterial blooms is a more likely mechanism impacting these coral reefs. Excessive human activity enhances the eutrophication of the marine water of the reefal region and may result in occurrence of the BBD.