期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
How to Prove Riemann Conjecture by Riemann’s Four Theorems
1
作者 Chuanmiao Chen 《Advances in Pure Mathematics》 2024年第8期619-632,共15页
Riemann (1859) had proved four theorems: analytic continuation ζ(s), functional equation ξ(z)=G(s)ζ(s)(s=1/2+iz, z=t−i(σ−1/2)), product expression ξ1(z)and Riemann-Siegel formula Z(z), and proposed Riemann conjec... Riemann (1859) had proved four theorems: analytic continuation ζ(s), functional equation ξ(z)=G(s)ζ(s)(s=1/2+iz, z=t−i(σ−1/2)), product expression ξ1(z)and Riemann-Siegel formula Z(z), and proposed Riemann conjecture (RC): All roots of ξ(z)are real. We have calculated ξand ζ, and found that ξ(z)is alternative oscillation, which intuitively implies RC, and the property of ζ(s)is not good. Therefore Riemann’s direction is correct, but he used the same notation ξ(t)=ξ1(t)to confuse two concepts. So the product expression only can be used in contraction. We find that if ξhas complex roots, then its structure is destroyed, so RC holds. In our proof, using Riemann’s four theorems is sufficient, needn’t cite other results. Hilbert (1900) proposed Riemann hypothesis (RH): The non-trivial roots of ζhave real part 1/2. Of course, RH also holds, but can not be proved directly by ζ(s). 展开更多
关键词 Riemann Conjecture ZETA-function xi-function functional Equation Product Expression CONTRADICTION
下载PDF
Proof of Riemann Conjecture Based on Contradiction between Xi-Function and Its Product Expression
2
作者 Chuanmiao Chen 《Advances in Pure Mathematics》 2023年第7期463-472,共10页
Riemann proved three results: analytically continue ζ(s) over the whole complex plane s =σ + it with a pole s =1;(Theorem A) functional equation ξ(t) = G(s<sub>0</sub>)ζ (s<sub>0</sub>), s&... Riemann proved three results: analytically continue ζ(s) over the whole complex plane s =σ + it with a pole s =1;(Theorem A) functional equation ξ(t) = G(s<sub>0</sub>)ζ (s<sub>0</sub>), s<sub>0</sub> =1/2 + it and (Theorem B) product expression ξ<sub>1</sub>(t) by all roots of ξ(t). He stated Riemann conjecture (RC): All roots of ξ (t) are real. We find a mistake of Riemann: he used the same notation ξ(t) in two theorems. Theorem B must contain complex roots;it conflicts with RC. Thus theorem B can only be used by contradiction. Our research can be completed on s<sub>0</sub> =1/2 + it. Using all real roots r<sub>k</sub><sub> </sub>and (true) complex roots z<sub>j</sub> = t<sub>j</sub> + ia<sub>j</sub> of ξ (z), define product expressions w(t), w(0) =ξ(0) and Q(t) > 0, Q(0) =1 respectively, so ξ<sub>1</sub>(t) = w(t)Q(t). Define infinite point-set L(ω) = {t : t ≥10 and |ζ(s<sub>0</sub>)| =ω} for small ω > 0. If ξ(t) has complex roots, then ω =ωQ(t) on L(ω). Finally in a large interval of the first module |z<sub>1</sub>|>>1, we can find many points t ∈ L(ω) to make Q(t) . This contraction proves RC. In addition, Riemann hypothesis (RH) ζ for also holds, but it cannot be proved by ζ. 展开更多
关键词 Riemann Conjecture xi-function functional Equation Product Expression Multiplicative Group CONTRADICTION
下载PDF
Approach to a Proof of the Riemann Hypothesis by the Second Mean-Value Theorem of Calculus 被引量:3
3
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2016年第13期972-1021,共51页
By the second mean-value theorem of calculus (Gauss-Bonnet theorem) we prove that the class of functionswith an integral representation of the form  with a real-valued function which is non-increasing a... By the second mean-value theorem of calculus (Gauss-Bonnet theorem) we prove that the class of functionswith an integral representation of the form  with a real-valued function which is non-increasing and decreases in infinity more rapidly than any exponential functions , possesses zeros only on the imaginary axis. The Riemann zeta function  as it is known can be related to an entire functionwith the same non-trivial zeros as . Then after a trivial argument displacement we relate it to a function  with a representation of the form  where  is rapidly decreasing in infinity and satisfies all requirements necessary for the given proof of the position of its zeros on the imaginary axis z=iy by the second mean-value theorem. Besides this theorem we apply the Cauchy-Riemann differential equation in an integrated operator form derived in the Appendix B. All this means that we prove a theorem for zeros of  on the imaginary axis z=iy for a whole class of function  which includes in this way the proof of the Riemann hypothesis. This whole class includes, in particular, also the modified Bessel functions  for which it is known that their zeros lie on the imaginary axis and which affirms our conclusions that we intend to publish at another place. In the same way a class of almost-periodic functions to piece-wise constant non-increasing functions  belong also to this case. At the end we give shortly an equivalent way of a more formal description of the obtained results using the Mellin transform of functions with its variable substituted by an operator. 展开更多
关键词 Riemann Hypothesis Riemann Zeta function xi function Gauss-Bonnet Theorem Mellin Transformation
下载PDF
Approach to Riemann Hypothesis by Combined Commensurable Step Function Approximation with Bonnet Method
4
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2020年第5期201-228,共28页
To the Riemann hypothesis, we investigate first the approximation by step-wise Omega functions Ω(u) with commensurable step lengths u0 concerning their zeros in corresponding Xi functions Ξ(z). They are periodically... To the Riemann hypothesis, we investigate first the approximation by step-wise Omega functions Ω(u) with commensurable step lengths u0 concerning their zeros in corresponding Xi functions Ξ(z). They are periodically on the y-axis with period proportional to inverse step length u0. It is found that they possess additional zeros off the imaginary y-axis and additionally on this axis and vanish in the limiting case u0 → 0 in complex infinity. There remain then only the “genuine” zeros for Xi functions to continuous Omega functions which we call “analytic zeros” and which lie on the imaginary axis. After a short repetition of the Second mean-value (or Bonnet) approach to the problem and the derivation of operational identities for Trigonometric functions we give in Section 8 a proof for the position of these genuine “analytic” zeros on the imaginary axis by construction of a contradiction for the case off the imaginary axis. In Section 10, we show by a few examples that monotonically decreasing of the Omega functions is only a sufficient condition for the mentioned property of the positions of zeros on the imaginary axis but not a necessary one. 展开更多
关键词 RIEMANN Zeta function RIEMANN xi function Second Mean-Value APPROACH (Bonnet Method) Chebyshev Polynomials BESSEL functions
下载PDF
Common Properties of Riemann Zeta Function, Bessel Functions and Gauss Function Concerning Their Zeros 被引量:1
5
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2019年第3期281-316,共36页
The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in t... The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in the complex domain by pictures. It can be seen how the zeros in finite approximations approach to the genuine zeros in the transition to higher-order approximation and in case of the Gaussian (bell) function that they go with great uniformity to infinity in the complex plane. A limiting transition from the modified Bessel functions to a Gaussian function is discussed and represented in pictures. In an Appendix a new building stone to a full proof of the Riemann hypothesis using the Second mean-value theorem is presented. 展开更多
关键词 RIEMANN Zeta and xi function Modified BESSEL functions Second Mean-Value THEOREM or Gauss-Bonnet THEOREM RIEMANN Hypothesis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部