期刊文献+

Proof of Riemann Conjecture Based on Contradiction between Xi-Function and Its Product Expression

Proof of Riemann Conjecture Based on Contradiction between Xi-Function and Its Product Expression
下载PDF
导出
摘要 Riemann proved three results: analytically continue ζ(s) over the whole complex plane s =σ + it with a pole s =1;(Theorem A) functional equation ξ(t) = G(s<sub>0</sub>)ζ (s<sub>0</sub>), s<sub>0</sub> =1/2 + it and (Theorem B) product expression ξ<sub>1</sub>(t) by all roots of ξ(t). He stated Riemann conjecture (RC): All roots of ξ (t) are real. We find a mistake of Riemann: he used the same notation ξ(t) in two theorems. Theorem B must contain complex roots;it conflicts with RC. Thus theorem B can only be used by contradiction. Our research can be completed on s<sub>0</sub> =1/2 + it. Using all real roots r<sub>k</sub><sub> </sub>and (true) complex roots z<sub>j</sub> = t<sub>j</sub> + ia<sub>j</sub> of ξ (z), define product expressions w(t), w(0) =ξ(0) and Q(t) > 0, Q(0) =1 respectively, so ξ<sub>1</sub>(t) = w(t)Q(t). Define infinite point-set L(ω) = {t : t ≥10 and |ζ(s<sub>0</sub>)| =ω} for small ω > 0. If ξ(t) has complex roots, then ω =ωQ(t) on L(ω). Finally in a large interval of the first module |z<sub>1</sub>|>>1, we can find many points t ∈ L(ω) to make Q(t) . This contraction proves RC. In addition, Riemann hypothesis (RH) ζ for also holds, but it cannot be proved by ζ. Riemann proved three results: analytically continue ζ(s) over the whole complex plane s =σ + it with a pole s =1;(Theorem A) functional equation ξ(t) = G(s<sub>0</sub>)ζ (s<sub>0</sub>), s<sub>0</sub> =1/2 + it and (Theorem B) product expression ξ<sub>1</sub>(t) by all roots of ξ(t). He stated Riemann conjecture (RC): All roots of ξ (t) are real. We find a mistake of Riemann: he used the same notation ξ(t) in two theorems. Theorem B must contain complex roots;it conflicts with RC. Thus theorem B can only be used by contradiction. Our research can be completed on s<sub>0</sub> =1/2 + it. Using all real roots r<sub>k</sub><sub> </sub>and (true) complex roots z<sub>j</sub> = t<sub>j</sub> + ia<sub>j</sub> of ξ (z), define product expressions w(t), w(0) =ξ(0) and Q(t) > 0, Q(0) =1 respectively, so ξ<sub>1</sub>(t) = w(t)Q(t). Define infinite point-set L(ω) = {t : t ≥10 and |ζ(s<sub>0</sub>)| =ω} for small ω > 0. If ξ(t) has complex roots, then ω =ωQ(t) on L(ω). Finally in a large interval of the first module |z<sub>1</sub>|>>1, we can find many points t ∈ L(ω) to make Q(t) . This contraction proves RC. In addition, Riemann hypothesis (RH) ζ for also holds, but it cannot be proved by ζ.
作者 Chuanmiao Chen Chuanmiao Chen(School of Mathematics and Statistics, Central South University, Changsha, China;College of Mathematics and Statistics, Hunan Normal University, Changsha, China)
出处 《Advances in Pure Mathematics》 2023年第7期463-472,共10页 理论数学进展(英文)
关键词 Riemann Conjecture Xi-Function Functional Equation Product Expression Multiplicative Group CONTRADICTION Riemann Conjecture Xi-Function Functional Equation Product Expression Multiplicative Group Contradiction
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部