Fungi and their symbionts can alleviate heavy metal stress by exuding soluble proteins and enzymes. This study examined the role of soluble protein and acid phosphatase (APase) exuded by Xerocomus chrysenteron, an e...Fungi and their symbionts can alleviate heavy metal stress by exuding soluble proteins and enzymes. This study examined the role of soluble protein and acid phosphatase (APase) exuded by Xerocomus chrysenteron, an ectomycorrhizal fungus, and the seedlings of its symbiont, Chinese pine (Pinus tabulaeformis), under conditions of excessive Cu and Cd. The growth type showed that this poorly studied ectomycorrhizal fungus was capable of tolerating high concentrations of Cu, and may be useful in phytoremediation. X. chrysenteron grew well at 80 mg/L Cu, and the EC50 for Cd was 17.82 mg/L. X. chrysenteron also showed enhanced exudation of soluble protein in both isolated and inoculated cultivations under the influence of Cu and Cd. Soluble protein exudation, however, differed under Cu and Cd stress in isolates. In mediums containing Cu, soluble protein exudation increased with concentration, but in mediums containing Cd the content of soluble protein increased to a comparable level at all concentrations. This study demonstrated that soluble protein was related to heavy metal tolerance, although the different ions played different roles. While APase activity in exudates of fungi and seedlings decreased under Cu and Cd stress in comparison to the control, the APase activity in seedlings was maintained by inoculation. Thus, X. chrysenteron facilitated the ability of plant to maintain a normal nutrient uptake, and therefore to protect it from heavy metal toxicity.展开更多
Mycorrhizal roots of the deciduous trees European beech (Fagus sylvatica (L.)) and Sessile oak (Quercus petraea (MattuschkaLiebl.)) and the conifers Norway spruce (Picea abies (L.) H. Karst.) and European larch (Larix...Mycorrhizal roots of the deciduous trees European beech (Fagus sylvatica (L.)) and Sessile oak (Quercus petraea (MattuschkaLiebl.)) and the conifers Norway spruce (Picea abies (L.) H. Karst.) and European larch (Larix decidua (Mill.)) associated with the ectomycorrhizal fungi matt bolete (Xerocomus pruinatus (Fries 1835)) or bay bolete (X. badius (Fries 1818)) were analysed with respect to the occurrence of dihydrolipoyl dehydrogenase (EC 1.8.1.4) allozymes. In root tissues of the two deciduous trees, two gene loci could be visualized after cellulose acetate electrophoresis while three loci were expressed in root tissues of the two coniferous species. The two fungal species and further ectomycorrhizal fungi expressed exclusively one dihydrolipoyl dehydrogenase gene. In Xerocomus pruinatus and X. badius, the dihydrolipoyl dehydrogenase gene consists of 1460 bp and 1370 bp, respectively, including five introns each consisting of 52 bp. Their DNA sequences correspond to 70 to 90% to other fungal dihydrolipoyl dehydrogenase genes. One monomer of the dimeric dihydrolipoyl dehydrogenase enzyme consists of 486 (X. pruinatus) or 454 (X. badius) amino acids which sum up to a molecular mass of 55 kDa (X. pruinatus), respectively 52 kDa (X. badius). The number of positively charged amino acid residues makes 79 (X. pruinatus) and 68 (X. badius) and the number of negatively charged amino acid residues was calculated to make 46 (X. pruinatus) and 48 (X. badius);isoelectric points make 9.99 (X. pruinatus) and 9.68 (X. badius). Calculated three dimensional structures reveal a short NADH binding site being part of a larger FAD-binding site and a binding/dimerization domain.展开更多
基金supported by the National Natural Science Foundation of China (No. 20777004)
文摘Fungi and their symbionts can alleviate heavy metal stress by exuding soluble proteins and enzymes. This study examined the role of soluble protein and acid phosphatase (APase) exuded by Xerocomus chrysenteron, an ectomycorrhizal fungus, and the seedlings of its symbiont, Chinese pine (Pinus tabulaeformis), under conditions of excessive Cu and Cd. The growth type showed that this poorly studied ectomycorrhizal fungus was capable of tolerating high concentrations of Cu, and may be useful in phytoremediation. X. chrysenteron grew well at 80 mg/L Cu, and the EC50 for Cd was 17.82 mg/L. X. chrysenteron also showed enhanced exudation of soluble protein in both isolated and inoculated cultivations under the influence of Cu and Cd. Soluble protein exudation, however, differed under Cu and Cd stress in isolates. In mediums containing Cu, soluble protein exudation increased with concentration, but in mediums containing Cd the content of soluble protein increased to a comparable level at all concentrations. This study demonstrated that soluble protein was related to heavy metal tolerance, although the different ions played different roles. While APase activity in exudates of fungi and seedlings decreased under Cu and Cd stress in comparison to the control, the APase activity in seedlings was maintained by inoculation. Thus, X. chrysenteron facilitated the ability of plant to maintain a normal nutrient uptake, and therefore to protect it from heavy metal toxicity.
文摘Mycorrhizal roots of the deciduous trees European beech (Fagus sylvatica (L.)) and Sessile oak (Quercus petraea (MattuschkaLiebl.)) and the conifers Norway spruce (Picea abies (L.) H. Karst.) and European larch (Larix decidua (Mill.)) associated with the ectomycorrhizal fungi matt bolete (Xerocomus pruinatus (Fries 1835)) or bay bolete (X. badius (Fries 1818)) were analysed with respect to the occurrence of dihydrolipoyl dehydrogenase (EC 1.8.1.4) allozymes. In root tissues of the two deciduous trees, two gene loci could be visualized after cellulose acetate electrophoresis while three loci were expressed in root tissues of the two coniferous species. The two fungal species and further ectomycorrhizal fungi expressed exclusively one dihydrolipoyl dehydrogenase gene. In Xerocomus pruinatus and X. badius, the dihydrolipoyl dehydrogenase gene consists of 1460 bp and 1370 bp, respectively, including five introns each consisting of 52 bp. Their DNA sequences correspond to 70 to 90% to other fungal dihydrolipoyl dehydrogenase genes. One monomer of the dimeric dihydrolipoyl dehydrogenase enzyme consists of 486 (X. pruinatus) or 454 (X. badius) amino acids which sum up to a molecular mass of 55 kDa (X. pruinatus), respectively 52 kDa (X. badius). The number of positively charged amino acid residues makes 79 (X. pruinatus) and 68 (X. badius) and the number of negatively charged amino acid residues was calculated to make 46 (X. pruinatus) and 48 (X. badius);isoelectric points make 9.99 (X. pruinatus) and 9.68 (X. badius). Calculated three dimensional structures reveal a short NADH binding site being part of a larger FAD-binding site and a binding/dimerization domain.