Through the Wronskian technique, a simple and direct proof is presented that the AKNS hierarchy in the bilinear form has generalized double Wronskian solutions. Moreover, by using a unified way, soliton solutions, rat...Through the Wronskian technique, a simple and direct proof is presented that the AKNS hierarchy in the bilinear form has generalized double Wronskian solutions. Moreover, by using a unified way, soliton solutions, rational solutions, Matveev solutions and complexitons in double Wronskian form for it are constructed.展开更多
A new method for constructing the Wronskian entries is proposed and applied to the differential-difference Kadomtsev-Petviashvilli (DΔKP) equation. The generalized Wronskian solutions to it are obtained, including ...A new method for constructing the Wronskian entries is proposed and applied to the differential-difference Kadomtsev-Petviashvilli (DΔKP) equation. The generalized Wronskian solutions to it are obtained, including rational solutions and Matveev solutions.展开更多
基金National Natural Science Foundation of China under Grant No.10371070the Special Found for Major Specialities of Shanghai Education CommitteeChina Postdoctoral Science Foundation
文摘Through the Wronskian technique, a simple and direct proof is presented that the AKNS hierarchy in the bilinear form has generalized double Wronskian solutions. Moreover, by using a unified way, soliton solutions, rational solutions, Matveev solutions and complexitons in double Wronskian form for it are constructed.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10371070 and 10671121 .Acknowledgments The authors exPress their thanks to Prof. D.J. Zhang and Dr. J.B. Bi for their good advices.
文摘A new method for constructing the Wronskian entries is proposed and applied to the differential-difference Kadomtsev-Petviashvilli (DΔKP) equation. The generalized Wronskian solutions to it are obtained, including rational solutions and Matveev solutions.