In this paper, we showed how groups are embedded into wreath products, we gave a simpler proof of the theorem by Audu (1991) (see <a href="#ref1">[1]</a>), also proved that a group can be embedde...In this paper, we showed how groups are embedded into wreath products, we gave a simpler proof of the theorem by Audu (1991) (see <a href="#ref1">[1]</a>), also proved that a group can be embedded into the wreath product of a factor group by a normal subgroup and also proved that a factor group can be embedded inside a wreath product and the wreath product of a factor group by a factor group can be embedded into a group. We further showed that when the abstract group in the Universal Embedding Theorem is a <em>p</em>-group, cyclic and simple, the embedding becomes an isomorphism. Examples were given to justify the results.展开更多
This paper computes the group and character table of Trimethylborane and Cyclohaxane. Results show that the groups are isomorphic to the wreath products C3wrC2 and C2wrC6 with orders 81 and 384 and with 17 and 28 conj...This paper computes the group and character table of Trimethylborane and Cyclohaxane. Results show that the groups are isomorphic to the wreath products C3wrC2 and C2wrC6 with orders 81 and 384 and with 17 and 28 conjugacy classes respectively, where Cn denotes a cyclic group of order n.展开更多
In [1], a new consequence of the (restricted) wreath product for arbitrary monoids A and B with an underlying set . Let us denote it by . Actually, in the same reference, it has been also defined the generating and re...In [1], a new consequence of the (restricted) wreath product for arbitrary monoids A and B with an underlying set . Let us denote it by . Actually, in the same reference, it has been also defined the generating and relator sets for , and then proved some finite and infinite cases about it. In this paper, by considering the product, we show Green’s relations L and R as well as we present the conditions for this product to be left cancellative, orthodox and finally left (right) inverse(s).展开更多
文摘In this paper, we showed how groups are embedded into wreath products, we gave a simpler proof of the theorem by Audu (1991) (see <a href="#ref1">[1]</a>), also proved that a group can be embedded into the wreath product of a factor group by a normal subgroup and also proved that a factor group can be embedded inside a wreath product and the wreath product of a factor group by a factor group can be embedded into a group. We further showed that when the abstract group in the Universal Embedding Theorem is a <em>p</em>-group, cyclic and simple, the embedding becomes an isomorphism. Examples were given to justify the results.
文摘This paper computes the group and character table of Trimethylborane and Cyclohaxane. Results show that the groups are isomorphic to the wreath products C3wrC2 and C2wrC6 with orders 81 and 384 and with 17 and 28 conjugacy classes respectively, where Cn denotes a cyclic group of order n.
文摘In [1], a new consequence of the (restricted) wreath product for arbitrary monoids A and B with an underlying set . Let us denote it by . Actually, in the same reference, it has been also defined the generating and relator sets for , and then proved some finite and infinite cases about it. In this paper, by considering the product, we show Green’s relations L and R as well as we present the conditions for this product to be left cancellative, orthodox and finally left (right) inverse(s).