Praseodymium doped lithium yttrium molybdate Li Y1-8x Pr x(Mo O4)2(x=0.005-0.025) phosphors were successfully prepared by the hydrothermal method. The phase, morphology, and luminescent property of the prepared ph...Praseodymium doped lithium yttrium molybdate Li Y1-8x Pr x(Mo O4)2(x=0.005-0.025) phosphors were successfully prepared by the hydrothermal method. The phase, morphology, and luminescent property of the prepared phosphors were investigated by X-ray diffraction and scanning electron microscopy. The results indicated that doping of Pr^3+ ions did not change the main phase of the phosphors. The samples emitted red luminescence upon excitation at 453 nm and the strongest emission peak corresponding to the characteristic transition of the Pr3+ ion: 3P0→3F2 was observed at 657 nm. Li Y(Mo O4)2:Pr^3+ red phosphors could be effectively excited by blue light emitting-diodes to emit red light; thus, acting as potential candidates for compensating the red light deficiency of cerium doped yttrium aluminum garnet yellow phosphor.展开更多
AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of...AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of the thin film. The surface morphology was studied by scanning electron microscope (SEM). While raising the annealing temperatures from 300˚C to 900˚C, the emission was observed from AlN: Eu under excitation of 260 nm excitation. The photoluminescence (PL) was integrated over the visible light wavelength shifted from the blue to the red zone in the CIE 1931 chromaticity coordinates. The luminescence color coordination of AlN: Eu depending on the annealing temperatures guides the further study of Eu-doped nitrides manufacturing on white light emitting diode (LED) and full color LED devices.展开更多
基金supported by National Natural Science Foundation of China(21205092)the National High-tech Research and Development Program of China(863 Program)(2011AA05A202)
文摘Praseodymium doped lithium yttrium molybdate Li Y1-8x Pr x(Mo O4)2(x=0.005-0.025) phosphors were successfully prepared by the hydrothermal method. The phase, morphology, and luminescent property of the prepared phosphors were investigated by X-ray diffraction and scanning electron microscopy. The results indicated that doping of Pr^3+ ions did not change the main phase of the phosphors. The samples emitted red luminescence upon excitation at 453 nm and the strongest emission peak corresponding to the characteristic transition of the Pr3+ ion: 3P0→3F2 was observed at 657 nm. Li Y(Mo O4)2:Pr^3+ red phosphors could be effectively excited by blue light emitting-diodes to emit red light; thus, acting as potential candidates for compensating the red light deficiency of cerium doped yttrium aluminum garnet yellow phosphor.
基金Shanxi Provincial Key Innovative Research Team in Science and Technology(201513002-10,201605D131045-10)Shanxi Provincial Key Research and Development Program(201603D111010,201703D321015-1)Program for Science and Technology Development of Shanxi(201603D121017)~~
文摘AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of the thin film. The surface morphology was studied by scanning electron microscope (SEM). While raising the annealing temperatures from 300˚C to 900˚C, the emission was observed from AlN: Eu under excitation of 260 nm excitation. The photoluminescence (PL) was integrated over the visible light wavelength shifted from the blue to the red zone in the CIE 1931 chromaticity coordinates. The luminescence color coordination of AlN: Eu depending on the annealing temperatures guides the further study of Eu-doped nitrides manufacturing on white light emitting diode (LED) and full color LED devices.