Weyl fermion is a massless Dirac fermion with definite chirality,which has been long pursued since 1929.Though it has not been observed as a fundamental particle in nature,Weyl fermion can be realized as low-energy ex...Weyl fermion is a massless Dirac fermion with definite chirality,which has been long pursued since 1929.Though it has not been observed as a fundamental particle in nature,Weyl fermion can be realized as low-energy excitation around Weyl point in Weyl semimetal,which possesses Weyl fermion cones in the bulk and nontrivial Fermi arc states on the surface. As a firstly discovered Weyl semimetal,Ta As crystal possesses 12 pairs of Weyl points in the momentum space,which are topologically protected against small perturbations. Here,we report for the first time the tip induced superconductivity on Ta As crystal by point contact spectroscopy. The zero bias conductance peak as well as a conductance plateau with double conductance peaks and sharp double dips are observed in the point contact spectra simultaneously,indicating unconventional superconductivity. Our further theoretical study suggests that the induced superconductivity may have nontrivial topology. The present work opens a new route in investigating the novel superconducting states based on Weyl materials.展开更多
The metallic tip-induced superconductivity in normal Weyl semimetal offers a promising platform to study topological superconductivity,which is currently a research focus in condensed matter physics.Here we experiment...The metallic tip-induced superconductivity in normal Weyl semimetal offers a promising platform to study topological superconductivity,which is currently a research focus in condensed matter physics.Here we experimentally uncover that unconventional superconductivity can be induced by hard point contact(PC)method of ferromagnetic tips in Ta As single crystals.The magneto-transport measurements of the ferromagnetic tip-induced superconducting(FTISC)states exhibit the quantum oscillations,which reveal that the superconductivity is induced in the topologically nontrivial Fermi surface of the Weyl semimetal,and show compatibility of ferromagnetism and induced superconductivity.We further measure the point contact spectra(PCS)of tunneling transport for FTISC states which are potentially of nontrivial topology.Considering that the magnetic Weyl semimetal with novel superconductivity is hard to realize in experiment,our results show a new route to investigate the unconventional superconductivity by combining the topological semimetal with ferromagnetism through hard PC method.展开更多
The holographic duality allows to construct and study models of strongly coupled quantum matter via dual gravitational theories.In general such models are characterized by the absence of quasiparticles, hydrodynamic b...The holographic duality allows to construct and study models of strongly coupled quantum matter via dual gravitational theories.In general such models are characterized by the absence of quasiparticles, hydrodynamic behavior and Planckian dissipation times. One particular interesting class of quantum materials are ungapped topological semimetals which have many interesting properties from Hall transport to topologically protected edge states. We review the application of the holographic duality to this type of quantum matter including the construction of holographic Weyl semimetals, nodal line semimetals, quantum phase transition to trivial states(ungapped and gapped), the holographic dual of Fermi arcs and how new unexpected transport properties,such as Hall viscosities arise. The holographic models promise to lead to new insights into the properties of this type of quantum matter.展开更多
YbMnBi2 is a recently discovered time-reversal-symmetry breaking type-Ⅱ Weyl semimetal.However, as a representation of the new category of topological matters, the scanning tunneling microcopy(STM) results on such im...YbMnBi2 is a recently discovered time-reversal-symmetry breaking type-Ⅱ Weyl semimetal.However, as a representation of the new category of topological matters, the scanning tunneling microcopy(STM) results on such important material are still absent.Here, we report the STM investigations on the morphology of vacuum cleaved single crystalline YbMnBi2 samples.A hill and valley type of topography is observed on the YbMnBi2 surface, which is consistent with the non-layer nature of its crystal structure.Analysis of STM images yields the information of the index of the vicinal surface.Our results here lay a playground of future atomic scale research on YbMnBi2.展开更多
Recently, the layered transition metal dichalcogenide 1 T MoTe2 has attracted considerable attention due to its non-saturating magnetoresistance, type-II Weyl semimetal properties, superconductivity, and potential can...Recently, the layered transition metal dichalcogenide 1 T MoTe2 has attracted considerable attention due to its non-saturating magnetoresistance, type-II Weyl semimetal properties, superconductivity, and potential candidate for twodimensional(2 D) topological insulator in the single-and few-layer limit. Here in this work, we perform systematic transport measurements on thin flakes of MoTe2 prepared by mechanical exfoliation. We find that MoTe2 flakes are superconducting and have an onset superconducting transition temperature Tc up to 5.3 K, which significantly exceeds that of its bulk counterpart. The in-plane upper critical field(Hc2||) is much higher than the Pauli paramagnetic limit, implying that the MoTe2 flakes have Zeeman-protected Ising superconductivity. Furthermore, the Tc and Hc2|| can be tuned by up to 320 mK and 400 mT by applying a gate voltage. Our result indicates that MoTe2 flake is a good candidate for studying exotic superconductivity with nontrivial topological properties.展开更多
New two-dimensional systems such as the surfaces of topological insulators (TIs) and graphene offer the possibility of experimentally investigating situations considered exotic just a decade ago. These situations in...New two-dimensional systems such as the surfaces of topological insulators (TIs) and graphene offer the possibility of experimentally investigating situations considered exotic just a decade ago. These situations include the quantum phase transition of the chiral type in electronic systems with a relativistic spectrum. Phonon-mediated (conventional) pairing in the Dirac semimetal appearing on the surface of a TI causes a transition into a chiral superconducting state, and exciton condensation in these gapless systems has long been envisioned in the physics of narrow-band semiconductors. Starting from the microscopic Dirac Hamiltonian with local attraction or repulsion, the Bardeen- Cooper-Schrieffer type of Gaussian approximation is developed in the framework of functional integrals. It is shown that owing to an ultrarelativistic dispersion relation, there is a quantum critical point governing the zero-temperature transition to a superconducting state or the exciton condensed state. Quantum transitions having critical exponents differ greatly from conventional ones and belong to the chiral universality class. We discuss the application of these results to recent experiments in which surface superconductivity was found in TIs and estimate the feasibility of phonon pairing.展开更多
We review the formulation of graphene’s massless Dirac equation, under the chiral electromagnetism approach, hopefully demystifying the material’s unusual chiral, relativistic, effective theory. In Dirac’s theory, ...We review the formulation of graphene’s massless Dirac equation, under the chiral electromagnetism approach, hopefully demystifying the material’s unusual chiral, relativistic, effective theory. In Dirac’s theory, many authors replace the speed of light by the Fermi velocity, in this paper we deduce that in graphene the Fermi velocity is obtained from the connection between the electromagnetic chirality and the fine structure constant when the electric wave E is quasi parallel to the magnetic wave H. With this approach we can consider the properties of electric circuits involving graphene or Weyl semimetals. The existence of the induced chiral magnetic current in a graphene subjected to magnetic field causes an interesting and unusual behavior of such circuits. We discuss an explicit example of a circuit involving the current generation in a “chiral battery”. The special properties of this circuit may be utilized for creating “chiral electronic” devices.展开更多
基金financially supported by National Basic Research Program of China (2013CB934600,2012CB927400,2012CB921300,and 2016YFA0301604)the Research Fund for the Doctoral Program of Higher Education (RFDP) of China+2 种基金the Open Project Program of the Pulsed High Magnetic Field Facility (PHMFF2015002)Huazhong University of Science and Technology,Open Research Fund Program of the State Key Laboratory of Low Dimensional Quantum Physicsthe National Natural Science Foundation of China (11474008 and 11574008)
文摘Weyl fermion is a massless Dirac fermion with definite chirality,which has been long pursued since 1929.Though it has not been observed as a fundamental particle in nature,Weyl fermion can be realized as low-energy excitation around Weyl point in Weyl semimetal,which possesses Weyl fermion cones in the bulk and nontrivial Fermi arc states on the surface. As a firstly discovered Weyl semimetal,Ta As crystal possesses 12 pairs of Weyl points in the momentum space,which are topologically protected against small perturbations. Here,we report for the first time the tip induced superconductivity on Ta As crystal by point contact spectroscopy. The zero bias conductance peak as well as a conductance plateau with double conductance peaks and sharp double dips are observed in the point contact spectra simultaneously,indicating unconventional superconductivity. Our further theoretical study suggests that the induced superconductivity may have nontrivial topology. The present work opens a new route in investigating the novel superconducting states based on Weyl materials.
基金financially supported by the National Key R&D Program of China (2018YFA0305604, 2017YFA0303302, and 2016YFA0301604)the National Natural Science Foundation of China (11888101, 11774008, 0401210001, 11574008, 11761161003, 11825401, 11704279, 11774255, U1832214, and 11774007)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (XDB28000000)the Beijing Natural Science Foundation (Z180010)the Key Project of Natural Science Foundation of Tianjin City (17JCZDJC30100)China Postdoctoral Science Foundation (0401130005)
文摘The metallic tip-induced superconductivity in normal Weyl semimetal offers a promising platform to study topological superconductivity,which is currently a research focus in condensed matter physics.Here we experimentally uncover that unconventional superconductivity can be induced by hard point contact(PC)method of ferromagnetic tips in Ta As single crystals.The magneto-transport measurements of the ferromagnetic tip-induced superconducting(FTISC)states exhibit the quantum oscillations,which reveal that the superconductivity is induced in the topologically nontrivial Fermi surface of the Weyl semimetal,and show compatibility of ferromagnetism and induced superconductivity.We further measure the point contact spectra(PCS)of tunneling transport for FTISC states which are potentially of nontrivial topology.Considering that the magnetic Weyl semimetal with novel superconductivity is hard to realize in experiment,our results show a new route to investigate the unconventional superconductivity by combining the topological semimetal with ferromagnetism through hard PC method.
基金supported by the National Key Research and Development Program of China(Grant No.2018FYA0305800)the Thousand Young Talents Program of China+3 种基金supported by the National Natural Science Foundation of China(Grant No.11875083)partly supported by starting grants from University of Chinese Academy of Sciences and Chinese Academy of Sciences,the Key Research Program of Chinese Academy of Sciences(Grant No.XDPB08-1)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)supported by the MCIU/AEI/FEDER,UE(Grant Nos.SEV2016-0597,FPA2015-65480-P,and PGC2018-095976-B-C21)。
文摘The holographic duality allows to construct and study models of strongly coupled quantum matter via dual gravitational theories.In general such models are characterized by the absence of quasiparticles, hydrodynamic behavior and Planckian dissipation times. One particular interesting class of quantum materials are ungapped topological semimetals which have many interesting properties from Hall transport to topologically protected edge states. We review the application of the holographic duality to this type of quantum matter including the construction of holographic Weyl semimetals, nodal line semimetals, quantum phase transition to trivial states(ungapped and gapped), the holographic dual of Fermi arcs and how new unexpected transport properties,such as Hall viscosities arise. The holographic models promise to lead to new insights into the properties of this type of quantum matter.
基金Project supported by the “Shuguang Program” from Shanghai Education Development Foundation and Shanghai Municipal Education Commission,Ministry of Science and Technology of China(Grant Nos.2016YFA0301003 and 2016YFA0300403)the National Natural Science Foundation of China(Grant Nos.11521404,11634009,11874256,11574202,11874258,11790313,11674226,U1632102,11674222,and 11861161003)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)
文摘YbMnBi2 is a recently discovered time-reversal-symmetry breaking type-Ⅱ Weyl semimetal.However, as a representation of the new category of topological matters, the scanning tunneling microcopy(STM) results on such important material are still absent.Here, we report the STM investigations on the morphology of vacuum cleaved single crystalline YbMnBi2 samples.A hill and valley type of topography is observed on the YbMnBi2 surface, which is consistent with the non-layer nature of its crystal structure.Analysis of STM images yields the information of the index of the vicinal surface.Our results here lay a playground of future atomic scale research on YbMnBi2.
基金Project supported by the Guangdong Innovative and Entrepreneurial Research Team Program,China(Grant No.2016ZT06D348)the National Natural Science Foundation of China(Grant No.11874193)the Shenzhen Fundamental Subject Research Program,China(Grant Nos.JCYJ20170817110751776 and JCYJ20170307105434022)
文摘Recently, the layered transition metal dichalcogenide 1 T MoTe2 has attracted considerable attention due to its non-saturating magnetoresistance, type-II Weyl semimetal properties, superconductivity, and potential candidate for twodimensional(2 D) topological insulator in the single-and few-layer limit. Here in this work, we perform systematic transport measurements on thin flakes of MoTe2 prepared by mechanical exfoliation. We find that MoTe2 flakes are superconducting and have an onset superconducting transition temperature Tc up to 5.3 K, which significantly exceeds that of its bulk counterpart. The in-plane upper critical field(Hc2||) is much higher than the Pauli paramagnetic limit, implying that the MoTe2 flakes have Zeeman-protected Ising superconductivity. Furthermore, the Tc and Hc2|| can be tuned by up to 320 mK and 400 mT by applying a gate voltage. Our result indicates that MoTe2 flake is a good candidate for studying exotic superconductivity with nontrivial topological properties.
基金Acknowledgements We are indebted to C. W. Luo, J. J. Lin, and W. B. Jian for explaining the details of their experiments, and T. Maniv and M. Lewkowicz for valuable discussions. The work of D. Li and B. Rosenstein was supported by the NSC of Taiwan, China, Grant No. 98-2112-M-009-014-MY3, and the MOE ATU program. The work of D. Li was also supported by the National Natural Science Foundation of China (Grant No. 11274018). B. Rosenstein was grateful to the School of Physics of Peking University for its hospitality.
文摘New two-dimensional systems such as the surfaces of topological insulators (TIs) and graphene offer the possibility of experimentally investigating situations considered exotic just a decade ago. These situations include the quantum phase transition of the chiral type in electronic systems with a relativistic spectrum. Phonon-mediated (conventional) pairing in the Dirac semimetal appearing on the surface of a TI causes a transition into a chiral superconducting state, and exciton condensation in these gapless systems has long been envisioned in the physics of narrow-band semiconductors. Starting from the microscopic Dirac Hamiltonian with local attraction or repulsion, the Bardeen- Cooper-Schrieffer type of Gaussian approximation is developed in the framework of functional integrals. It is shown that owing to an ultrarelativistic dispersion relation, there is a quantum critical point governing the zero-temperature transition to a superconducting state or the exciton condensed state. Quantum transitions having critical exponents differ greatly from conventional ones and belong to the chiral universality class. We discuss the application of these results to recent experiments in which surface superconductivity was found in TIs and estimate the feasibility of phonon pairing.
文摘We review the formulation of graphene’s massless Dirac equation, under the chiral electromagnetism approach, hopefully demystifying the material’s unusual chiral, relativistic, effective theory. In Dirac’s theory, many authors replace the speed of light by the Fermi velocity, in this paper we deduce that in graphene the Fermi velocity is obtained from the connection between the electromagnetic chirality and the fine structure constant when the electric wave E is quasi parallel to the magnetic wave H. With this approach we can consider the properties of electric circuits involving graphene or Weyl semimetals. The existence of the induced chiral magnetic current in a graphene subjected to magnetic field causes an interesting and unusual behavior of such circuits. We discuss an explicit example of a circuit involving the current generation in a “chiral battery”. The special properties of this circuit may be utilized for creating “chiral electronic” devices.