Power conversion efficiency(PCE)of single-junction polymer solar cells(PSCs)has made a remarkable breakthrough recently.Plenty of work was reported to achieve PCEs higher than 16%derived from the PM6:Y6 binary system....Power conversion efficiency(PCE)of single-junction polymer solar cells(PSCs)has made a remarkable breakthrough recently.Plenty of work was reported to achieve PCEs higher than 16%derived from the PM6:Y6 binary system.To further increase the PCEs of binary OSCs incorporating small molecular acceptor(SMA)Y6,we substituted PM6 with PM7 due to the deeper highest occupied molecular orbital(HOMO)of PM7.Consequently,the PM7:Y6 has achieved PCEs as high as 17.0%by the hotcast method,due to the improved open-circuit voltage(VOC).Compared with PM6,the lower HOMO of PM7 increases the gap between ELUMO-donor and EHOMO-acceptor,which is proportional to VOC.This research provides a high PCE for single-junction binary PSCs,which is meaningful for device fabrication related to PM7 and commercialization of PSCs.展开更多
A new precision full-wave rectifier employing only two differential difference current conveyors, which is very suitable for CMOS technology implementation, is presented. The proposed rectifier is the voltage-mode cir...A new precision full-wave rectifier employing only two differential difference current conveyors, which is very suitable for CMOS technology implementation, is presented. The proposed rectifier is the voltage-mode circuit, which offers high-input and low-output impedance hence it can be directly connected to load without using any buffer circuits. PSPICE is used to verify the circuit performance. Simulated rectifier results based-on a 0.5 μm CMOS technology with ±2.5 V supply voltage demonstrates high precision rectification and excellent temperature stability. In addition, the application of proposed rectifier to pseudo RMS-to-DC conversion is also introduced.展开更多
基金supported by Shen Zhen Technology and Innovation Commission(JCYJ20170413173814007,JCYJ20170818113905024)Hong Kong Research Grants Council(Research Impact Fund R6021-18,16305915,16322416,606012,16303917)+2 种基金Hong Kong Innovation and Technology Commission(ITCCNERC14SC01,ITS/471/18)supported by National Natural Science Foundation of China(51573120,51973146,91633301)Collaborative Innovation Center of Suzhou Nano Science&Technology,and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Power conversion efficiency(PCE)of single-junction polymer solar cells(PSCs)has made a remarkable breakthrough recently.Plenty of work was reported to achieve PCEs higher than 16%derived from the PM6:Y6 binary system.To further increase the PCEs of binary OSCs incorporating small molecular acceptor(SMA)Y6,we substituted PM6 with PM7 due to the deeper highest occupied molecular orbital(HOMO)of PM7.Consequently,the PM7:Y6 has achieved PCEs as high as 17.0%by the hotcast method,due to the improved open-circuit voltage(VOC).Compared with PM6,the lower HOMO of PM7 increases the gap between ELUMO-donor and EHOMO-acceptor,which is proportional to VOC.This research provides a high PCE for single-junction binary PSCs,which is meaningful for device fabrication related to PM7 and commercialization of PSCs.
文摘A new precision full-wave rectifier employing only two differential difference current conveyors, which is very suitable for CMOS technology implementation, is presented. The proposed rectifier is the voltage-mode circuit, which offers high-input and low-output impedance hence it can be directly connected to load without using any buffer circuits. PSPICE is used to verify the circuit performance. Simulated rectifier results based-on a 0.5 μm CMOS technology with ±2.5 V supply voltage demonstrates high precision rectification and excellent temperature stability. In addition, the application of proposed rectifier to pseudo RMS-to-DC conversion is also introduced.