干扰素诱导蛋白6(interferon,alpha-inducible protein 6,IFI6)是干扰素刺激基因(interferon-stimulated genes,ISGs)之一,能被Ⅰ型干扰素(interferon,IFN)包括IFN-α和IFN-β诱导上调,又名IFI6-16、G1P3。在病毒感染性疾病、自身免疫...干扰素诱导蛋白6(interferon,alpha-inducible protein 6,IFI6)是干扰素刺激基因(interferon-stimulated genes,ISGs)之一,能被Ⅰ型干扰素(interferon,IFN)包括IFN-α和IFN-β诱导上调,又名IFI6-16、G1P3。在病毒感染性疾病、自身免疫性疾病及一些肿瘤发生、发展过程中,IFI6往往高表达,并发挥着抗病毒、抗凋亡以及促进肿瘤进展的作用。本文将依据国内外研究现状对IFI6在疾病中表达的变化及其可能发挥的生物学效应进行综述。展开更多
<strong>Background: </strong>Pyroptosis is defined as programmed necrosis executed by gasdermin D or E (GSDMD or GSDME), which punches cellular membrane. Morphologically, pyroptosis is characterized by cel...<strong>Background: </strong>Pyroptosis is defined as programmed necrosis executed by gasdermin D or E (GSDMD or GSDME), which punches cellular membrane. Morphologically, pyroptosis is characterized by cell swelling and cell membrane rupture, leading to the release of cellular contents that triggers intense inflammatory response. More and more studies have found that pyroptosis may be involved in the pathogenesis of viral infection, which may be a determinant for inflammation observed in most viral diseases. <strong>Objective:</strong> This paper aims to summarize the roles of pyroptosis in the pathogenesis of viral infectious diseases and to provide potential drug targets for the treatment of viral diseases, which will contribute to medical research and public health. <strong>Measures:</strong> This paper mainly summarizes pyroptosis occurring in diseases caused by different viruses, including human immunodeficiency virus, hepatitis virus, enterovirus, influenza virus and dengue fever virus. Meanwhile, the reported mechanism underlying pyroptosis mediating pathogenesis of these viral diseases will also be described. <strong>Conclusion:</strong> Current studies have shown that pyroptosis is a double-edged sword in viral infectious diseases. On one hand, pyroptosis leads to pathogenic inflammation of many viral infectious diseases which aggravate tissue damage initiated by viral infection, and blocking proptosis usually relieves the inflammation, which exerts therapeutic effects on viral diseases. On the other hand, moderating pyroptosis can contribute to defense against pathogen infection by releasing immune epitopes and inducing antiviral immune response.展开更多
病毒性传染病是威胁人类健康的重要因素,迫切需要新的治疗方法来降低由急性病毒感染如鼻病毒和登革热病毒以及慢性病毒感染如人类免疫缺陷病毒1和乙型肝炎病毒引起的发病率和死亡率.随着分子生物学技术的发展,靶向序列特异性的基因编辑...病毒性传染病是威胁人类健康的重要因素,迫切需要新的治疗方法来降低由急性病毒感染如鼻病毒和登革热病毒以及慢性病毒感染如人类免疫缺陷病毒1和乙型肝炎病毒引起的发病率和死亡率.随着分子生物学技术的发展,靶向序列特异性的基因编辑技术成为传染病治疗的有力工具.其中规律成簇间隔短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR)-CRISPR相关蛋白9(CRISPR associated protein 9,Cas9)凭借其高效、简便、高特异性等特点被广泛应用于细胞系和动物模型中的传染病治疗,从而成为有前景的新型传染病治疗模式.目前,利用病毒和非病毒载体将Cas9以DNA、m RNA或蛋白质的形式递送到细胞中的可行性研究和评估CRISPR-Cas9体内适用性的临床试验已经在进行中.本篇综述中,我们将对CRISPR-Cas9的原理,其应用于传染病治疗的最新研究进展以及该技术面临的挑战和可预测性的解决方法等加以概述,并进一步展望其未来的发展方向.展开更多
文摘干扰素诱导蛋白6(interferon,alpha-inducible protein 6,IFI6)是干扰素刺激基因(interferon-stimulated genes,ISGs)之一,能被Ⅰ型干扰素(interferon,IFN)包括IFN-α和IFN-β诱导上调,又名IFI6-16、G1P3。在病毒感染性疾病、自身免疫性疾病及一些肿瘤发生、发展过程中,IFI6往往高表达,并发挥着抗病毒、抗凋亡以及促进肿瘤进展的作用。本文将依据国内外研究现状对IFI6在疾病中表达的变化及其可能发挥的生物学效应进行综述。
文摘<strong>Background: </strong>Pyroptosis is defined as programmed necrosis executed by gasdermin D or E (GSDMD or GSDME), which punches cellular membrane. Morphologically, pyroptosis is characterized by cell swelling and cell membrane rupture, leading to the release of cellular contents that triggers intense inflammatory response. More and more studies have found that pyroptosis may be involved in the pathogenesis of viral infection, which may be a determinant for inflammation observed in most viral diseases. <strong>Objective:</strong> This paper aims to summarize the roles of pyroptosis in the pathogenesis of viral infectious diseases and to provide potential drug targets for the treatment of viral diseases, which will contribute to medical research and public health. <strong>Measures:</strong> This paper mainly summarizes pyroptosis occurring in diseases caused by different viruses, including human immunodeficiency virus, hepatitis virus, enterovirus, influenza virus and dengue fever virus. Meanwhile, the reported mechanism underlying pyroptosis mediating pathogenesis of these viral diseases will also be described. <strong>Conclusion:</strong> Current studies have shown that pyroptosis is a double-edged sword in viral infectious diseases. On one hand, pyroptosis leads to pathogenic inflammation of many viral infectious diseases which aggravate tissue damage initiated by viral infection, and blocking proptosis usually relieves the inflammation, which exerts therapeutic effects on viral diseases. On the other hand, moderating pyroptosis can contribute to defense against pathogen infection by releasing immune epitopes and inducing antiviral immune response.
文摘病毒性传染病是威胁人类健康的重要因素,迫切需要新的治疗方法来降低由急性病毒感染如鼻病毒和登革热病毒以及慢性病毒感染如人类免疫缺陷病毒1和乙型肝炎病毒引起的发病率和死亡率.随着分子生物学技术的发展,靶向序列特异性的基因编辑技术成为传染病治疗的有力工具.其中规律成簇间隔短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR)-CRISPR相关蛋白9(CRISPR associated protein 9,Cas9)凭借其高效、简便、高特异性等特点被广泛应用于细胞系和动物模型中的传染病治疗,从而成为有前景的新型传染病治疗模式.目前,利用病毒和非病毒载体将Cas9以DNA、m RNA或蛋白质的形式递送到细胞中的可行性研究和评估CRISPR-Cas9体内适用性的临床试验已经在进行中.本篇综述中,我们将对CRISPR-Cas9的原理,其应用于传染病治疗的最新研究进展以及该技术面临的挑战和可预测性的解决方法等加以概述,并进一步展望其未来的发展方向.