随着栅极长度、硅膜厚度以及埋氧层厚度的减小,MOS器件短沟道效应变得越来越严峻。本文首先给出了决定全耗尽绝缘体上硅短沟道效应的三种机制;然后从接地层、埋层工程、沟道工程、源漏工程、侧墙工程和栅工程等六种工程技术方面讨论了...随着栅极长度、硅膜厚度以及埋氧层厚度的减小,MOS器件短沟道效应变得越来越严峻。本文首先给出了决定全耗尽绝缘体上硅短沟道效应的三种机制;然后从接地层、埋层工程、沟道工程、源漏工程、侧墙工程和栅工程等六种工程技术方面讨论了为抑制短沟道效应而引入的不同UTBB SOI MOSFETs结构,分析了这些结构能够有效抑制短沟道效应(如漏致势垒降低、亚阈值摆幅、关态泄露电流、开态电流等)的机理;而后基于这六种技术,对近年来在UTBB SOI MOSFETs短沟道效应抑制方面所做的工作进行了总结;最后对未来技术的发展进行了展望。展开更多
This is Part II of a two-part paper that explores the 28-nm UTBB FD-SOI CMOS and the 22-nm Tri-Gate FinFET technology as the better alternatives to bulk transistors especially when the transistor’s architecture is go...This is Part II of a two-part paper that explores the 28-nm UTBB FD-SOI CMOS and the 22-nm Tri-Gate FinFET technology as the better alternatives to bulk transistors especially when the transistor’s architecture is going fully depleted and its size is becoming much smaller, 28-nm and above. Reliability tests of those alternatives are first discussed. Then, a comparison is made between the two alternative transistors comparing their physical properties, electrical properties, and their preferences in different applications.展开更多
Nowadays, transistor technology is going toward the fully depleted architecture;the bulk transistors are becoming more complex in manufacturing as the transistor size is becoming smaller to achieve the high performanc...Nowadays, transistor technology is going toward the fully depleted architecture;the bulk transistors are becoming more complex in manufacturing as the transistor size is becoming smaller to achieve the high performance especially at the node 28 nm. This is the first of two papers that discuss the basic drawbacks of the bulk transistors and explain the two alternative transistors: 28 nm UTBB FD-SOI CMOS and the 22 nm Tri-Gate FinFET. The accompanying paper, Part II, focuses on the comparison between those alternatives and their physical properties, electrical properties, and reliability tests to properly set the preferences when choosing for different mobile media and consumers’ applications.展开更多
文摘随着栅极长度、硅膜厚度以及埋氧层厚度的减小,MOS器件短沟道效应变得越来越严峻。本文首先给出了决定全耗尽绝缘体上硅短沟道效应的三种机制;然后从接地层、埋层工程、沟道工程、源漏工程、侧墙工程和栅工程等六种工程技术方面讨论了为抑制短沟道效应而引入的不同UTBB SOI MOSFETs结构,分析了这些结构能够有效抑制短沟道效应(如漏致势垒降低、亚阈值摆幅、关态泄露电流、开态电流等)的机理;而后基于这六种技术,对近年来在UTBB SOI MOSFETs短沟道效应抑制方面所做的工作进行了总结;最后对未来技术的发展进行了展望。
文摘This is Part II of a two-part paper that explores the 28-nm UTBB FD-SOI CMOS and the 22-nm Tri-Gate FinFET technology as the better alternatives to bulk transistors especially when the transistor’s architecture is going fully depleted and its size is becoming much smaller, 28-nm and above. Reliability tests of those alternatives are first discussed. Then, a comparison is made between the two alternative transistors comparing their physical properties, electrical properties, and their preferences in different applications.
文摘Nowadays, transistor technology is going toward the fully depleted architecture;the bulk transistors are becoming more complex in manufacturing as the transistor size is becoming smaller to achieve the high performance especially at the node 28 nm. This is the first of two papers that discuss the basic drawbacks of the bulk transistors and explain the two alternative transistors: 28 nm UTBB FD-SOI CMOS and the 22 nm Tri-Gate FinFET. The accompanying paper, Part II, focuses on the comparison between those alternatives and their physical properties, electrical properties, and reliability tests to properly set the preferences when choosing for different mobile media and consumers’ applications.