A system consisting of a two-stage up-flow anaerobic sludge blanket (UASB), an anoxic/aerobic (A/O) reactor and a sequencing batch reactor (SBR), was used to treat landfill leachate. During operation, denitrific...A system consisting of a two-stage up-flow anaerobic sludge blanket (UASB), an anoxic/aerobic (A/O) reactor and a sequencing batch reactor (SBR), was used to treat landfill leachate. During operation, denitrification and methanogenesis took place simultaneously in the first stage UASB, and the effluent chemical oxygen demand (COD) was further removed in the second stage UASB. Then the denitrification of nitrite and nitrate in the returned sludge by using the residual COD was accomplished in the A/O reactor, and ammonia was removed via nitrite in it. Last but not least, the residual ammonia was removed in SBR as well as nitrite and nitrate which were produced by nitrification. The results over 120 d (60 d for phase I and 60 d for phase II) were as follows: when the total nitrogen (TN) concentration of influent leachate was about 2500 mg/L and the ammonia nitrogen concentration was about 2000 mg/L, the shortcut nitrification with 85%-90% nitrite accumulation was achieved stably in the A/O reactor. The TN and ammonia nitrogen removal efficiencies of the system were 98% and 97%, respectively. The residual ammonia, nitrite and nitrate produced during nitrification in the A/O reactor could be washed out almost completely in SBR. The TN and ammonia nitrogen concentrations of final effluent were about 39 mg/L and 12 mg/L, respectively.展开更多
This work evaluated the effects of sodium ion concentration, ranging from 0 to 16000mg·L^-1(Na^+), on the conversion of sucrose to hydrogen by a high-activity anaerobic hydrogen-producing granular sludge. At ...This work evaluated the effects of sodium ion concentration, ranging from 0 to 16000mg·L^-1(Na^+), on the conversion of sucrose to hydrogen by a high-activity anaerobic hydrogen-producing granular sludge. At the optimum sodium ion concentration [1000-2000mg·L^-1(Na^+)] for hydrogen production at 37℃, the maximum sucrose degradation rate, the specific hydrogen production yield and the specific hydrogen production rate were 393.6-413.1mg·L^-1.h^-1, 28.04-28.97ml·g^-1, 7.52-7.83ml·g^-1.h^-1, respectively. The specific production yields of propionate, butyrate and valerate decreased with increasing sodium ion concentration, whereas the specific acetate production yield increased, meanwhile the specific production yields of ethanol and caproate were less than 55.3 and 12.6mg·g^-1, respectively. The hybrid fermentation composition gradually developed from acetate, propionate and butyrate to acetate with the increase in sodium ion concentration.展开更多
A circulating fluidized bed evaporator(including down-flow, horizontal, and up-flow beds) was constructed to study the effect of flow directions on multiphase flow boiling heat transfer. A range of experimental invest...A circulating fluidized bed evaporator(including down-flow, horizontal, and up-flow beds) was constructed to study the effect of flow directions on multiphase flow boiling heat transfer. A range of experimental investigations were carried out by varying amount of added particles(0-2%), circulation flow rate(2.15-5.16 m^3/h) and heat flux(8-16 kW/m^2). The comparison of heat transfer performance in different vertical heights of the horizontal bed was also discussed. Results reveal that the glass bead particle can enhance heat transfer compared with vapor-liquid two-phase flow for all beds. At a low heat flux(q = 8 kW/m), the heat-transfer-enhancing factor of the horizontal bed is obviously greater than those of the up-flow and down-flow beds. With the increase in the amount of added particles, the heat-transfer-enhancing factors of the up-flow and down-flow beds increase, whereas that of the horizontal bed initially increases and then decreases. However, at a high heat flux(q=16 kW/m), the heat-transfer-enhancing factors of the three beds show an increasing tendency with the increase in the amount of added particles and become closer than those at a low heat flux. For all beds, the heat-transfer-enhancing factor generally increases with the circulation flow rate but decreases with the increase in heat flux.展开更多
Riser operating modes are vital to designing a circulating fluidized bed (CFB) reactor for a required process of either a gas-solid or a gas-catalytic nature. Different operating modes provide different solids' res...Riser operating modes are vital to designing a circulating fluidized bed (CFB) reactor for a required process of either a gas-solid or a gas-catalytic nature. Different operating modes provide different solids' residence times and mixing behaviors, which define the reactions' efficiency and yield. The literature demonstrates distinct operating modes resulting from observed differences in slip factors and the range of particle velocities and their associated residence time distribution. The present research uses positron emission particle tracking (PEPT) in a riser of B-type bed material to determine the different operating modes by measuring (i) particle velocities and residence time distribution, (ii) population densities of these particles in the cross-sectional area of the riser, and (iii) solids flow pattern at the bottom of the riser, Data treatment defines four distinct solids hold-up regimes in the riser and proposes a "phase diagram" depicting the existence of the different operating modes (dilute, dense, core-annulus and combined) as a function of the superficial gas velocity and solids circulation flux in the riser. The delineated regimes have good agreement with available literature data and known industrial operations. Comparison with literature data for risers using A-type powders is also fair. The diagram enables CFB designers to better delineate operating characteristics.展开更多
The organic matter and two types of disinfection byproduct(DBP) precursors in micropolluted source water were removed using an iron–carbon micro-electrolysis(ICME)combined with up-flow biological aerated filter(UBAF)...The organic matter and two types of disinfection byproduct(DBP) precursors in micropolluted source water were removed using an iron–carbon micro-electrolysis(ICME)combined with up-flow biological aerated filter(UBAF) process. Two pilot-scale experiments(ICME-UBAF and UBAF alone) were used to investigate the effect of the ICME system on the removal of organic matter and DBP precursors. The results showed that ICME pretreatment removed 15.6% of dissolved organic matter(DOM)and significantly improved the removal rate in the subsequent UBAF process. The ICME system removed 31% of trichloromethane(TCM) precursors and 20% of dichloroacetonitrile(DCAN) precursors. The results of measurements of the molecular weight distribution and hydrophilic fractions of DOM and DBP precursors showed that ICME pretreatment played a key role in breaking large-molecular-weight organic matter into low-molecular-weight components, and the hydrophobic fraction into hydrophilic compounds, which was favorable for subsequent biodegradation by UBAF.Three-dimensional fluorescence spectroscopy(3D-EEM) further indicated that the ICME system improved the removal of TCM and DCAN precursors. The biomass analysis indicated the presence of a larger and more diverse microbial community in the ICME-UBAF system than for the UBAF alone. The high-throughput sequencing results revealed that domination of the genera Sphingomonas, Brevundimonas and Sphingorhabdus contributed to the better removal of organic matter and two types of DBP precursors. Also, Nitrosomonas and Pseudomonas were beneficial for ammonia removal.展开更多
Simultaneous anammox and denitrification(SAD) is an efficient approach to treat wastewater having a low C/N ratio;however, few studies have investigated a combination of SAD and partial nitritation(PN). In this study,...Simultaneous anammox and denitrification(SAD) is an efficient approach to treat wastewater having a low C/N ratio;however, few studies have investigated a combination of SAD and partial nitritation(PN). In this study, a lab-scale up-flow blanket filter(UBF) and zeolite sequence batch reactor(ZSBR) were continuously operated to implement SAD and PN advantages, respectively. The UBF achieved a high total nitrogen(TN) removal efficiency of over 70% during the start-up stage(days 1–50), and reached a TN removal efficiency of 96%in the following 90 days(days 51–140) at COD/NH_(4)^(+)-N ratio of 2.5. The absolute abundance of anammox bateria increased to the highest value of 1.58 × 107copies/μL DNA;Comamonadaceae was predominant in the UBF at the optimal ratio. Meanwhile, ZSBR was initiated on day 115 as fast nitritation process to satisfy the influent requirement for the UBF. The combined process was started on day 140 and then lasted for 30 days, during the combined process, between the two reactors, the UBF was the main contributor for TN(66.5% ± 4.5%)and COD(71.8% ± 4.9%) removal. These results demonstrated that strong SAD occurred in the UBF when following a ZSBR with in-situ NOB elimination. This research presents insights into a novel biological nitrogen removal process for low C/N ratio wastewater treatment.展开更多
基金supported by the Project of Beijing Natural Science Foundation (No. 8091001)the National Natural Science Foundation of China (No. 50978003)+1 种基金the Higher Learning under the Jurisdiction of Beijing Municipality (No. PHR20090502)the State Key Laboratory of Urban Water Resource and Environment (HIT) (No.QAK200802)
文摘A system consisting of a two-stage up-flow anaerobic sludge blanket (UASB), an anoxic/aerobic (A/O) reactor and a sequencing batch reactor (SBR), was used to treat landfill leachate. During operation, denitrification and methanogenesis took place simultaneously in the first stage UASB, and the effluent chemical oxygen demand (COD) was further removed in the second stage UASB. Then the denitrification of nitrite and nitrate in the returned sludge by using the residual COD was accomplished in the A/O reactor, and ammonia was removed via nitrite in it. Last but not least, the residual ammonia was removed in SBR as well as nitrite and nitrate which were produced by nitrification. The results over 120 d (60 d for phase I and 60 d for phase II) were as follows: when the total nitrogen (TN) concentration of influent leachate was about 2500 mg/L and the ammonia nitrogen concentration was about 2000 mg/L, the shortcut nitrification with 85%-90% nitrite accumulation was achieved stably in the A/O reactor. The TN and ammonia nitrogen removal efficiencies of the system were 98% and 97%, respectively. The residual ammonia, nitrite and nitrate produced during nitrification in the A/O reactor could be washed out almost completely in SBR. The TN and ammonia nitrogen concentrations of final effluent were about 39 mg/L and 12 mg/L, respectively.
基金Supported by the National Natural Science Foundation of China (No.20122203).
文摘This work evaluated the effects of sodium ion concentration, ranging from 0 to 16000mg·L^-1(Na^+), on the conversion of sucrose to hydrogen by a high-activity anaerobic hydrogen-producing granular sludge. At the optimum sodium ion concentration [1000-2000mg·L^-1(Na^+)] for hydrogen production at 37℃, the maximum sucrose degradation rate, the specific hydrogen production yield and the specific hydrogen production rate were 393.6-413.1mg·L^-1.h^-1, 28.04-28.97ml·g^-1, 7.52-7.83ml·g^-1.h^-1, respectively. The specific production yields of propionate, butyrate and valerate decreased with increasing sodium ion concentration, whereas the specific acetate production yield increased, meanwhile the specific production yields of ethanol and caproate were less than 55.3 and 12.6mg·g^-1, respectively. The hybrid fermentation composition gradually developed from acetate, propionate and butyrate to acetate with the increase in sodium ion concentration.
基金supported by Tianjin Municipal Science and Technology Commission, China (No. 2009ZCKFGX01900)
文摘A circulating fluidized bed evaporator(including down-flow, horizontal, and up-flow beds) was constructed to study the effect of flow directions on multiphase flow boiling heat transfer. A range of experimental investigations were carried out by varying amount of added particles(0-2%), circulation flow rate(2.15-5.16 m^3/h) and heat flux(8-16 kW/m^2). The comparison of heat transfer performance in different vertical heights of the horizontal bed was also discussed. Results reveal that the glass bead particle can enhance heat transfer compared with vapor-liquid two-phase flow for all beds. At a low heat flux(q = 8 kW/m), the heat-transfer-enhancing factor of the horizontal bed is obviously greater than those of the up-flow and down-flow beds. With the increase in the amount of added particles, the heat-transfer-enhancing factors of the up-flow and down-flow beds increase, whereas that of the horizontal bed initially increases and then decreases. However, at a high heat flux(q=16 kW/m), the heat-transfer-enhancing factors of the three beds show an increasing tendency with the increase in the amount of added particles and become closer than those at a low heat flux. For all beds, the heat-transfer-enhancing factor generally increases with the circulation flow rate but decreases with the increase in heat flux.
文摘Riser operating modes are vital to designing a circulating fluidized bed (CFB) reactor for a required process of either a gas-solid or a gas-catalytic nature. Different operating modes provide different solids' residence times and mixing behaviors, which define the reactions' efficiency and yield. The literature demonstrates distinct operating modes resulting from observed differences in slip factors and the range of particle velocities and their associated residence time distribution. The present research uses positron emission particle tracking (PEPT) in a riser of B-type bed material to determine the different operating modes by measuring (i) particle velocities and residence time distribution, (ii) population densities of these particles in the cross-sectional area of the riser, and (iii) solids flow pattern at the bottom of the riser, Data treatment defines four distinct solids hold-up regimes in the riser and proposes a "phase diagram" depicting the existence of the different operating modes (dilute, dense, core-annulus and combined) as a function of the superficial gas velocity and solids circulation flux in the riser. The delineated regimes have good agreement with available literature data and known industrial operations. Comparison with literature data for risers using A-type powders is also fair. The diagram enables CFB designers to better delineate operating characteristics.
基金supported by the National Natural Science Foundation of China (No. 51778208)the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2017ZX07201002)the Qing Lan Project, and the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The organic matter and two types of disinfection byproduct(DBP) precursors in micropolluted source water were removed using an iron–carbon micro-electrolysis(ICME)combined with up-flow biological aerated filter(UBAF) process. Two pilot-scale experiments(ICME-UBAF and UBAF alone) were used to investigate the effect of the ICME system on the removal of organic matter and DBP precursors. The results showed that ICME pretreatment removed 15.6% of dissolved organic matter(DOM)and significantly improved the removal rate in the subsequent UBAF process. The ICME system removed 31% of trichloromethane(TCM) precursors and 20% of dichloroacetonitrile(DCAN) precursors. The results of measurements of the molecular weight distribution and hydrophilic fractions of DOM and DBP precursors showed that ICME pretreatment played a key role in breaking large-molecular-weight organic matter into low-molecular-weight components, and the hydrophobic fraction into hydrophilic compounds, which was favorable for subsequent biodegradation by UBAF.Three-dimensional fluorescence spectroscopy(3D-EEM) further indicated that the ICME system improved the removal of TCM and DCAN precursors. The biomass analysis indicated the presence of a larger and more diverse microbial community in the ICME-UBAF system than for the UBAF alone. The high-throughput sequencing results revealed that domination of the genera Sphingomonas, Brevundimonas and Sphingorhabdus contributed to the better removal of organic matter and two types of DBP precursors. Also, Nitrosomonas and Pseudomonas were beneficial for ammonia removal.
基金supported by the Open Research Fund of Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control (No. EPD202002)Scientific Research Project of Education Department of Hunan Province (No. 20C0057)the Science and Technology Department of Hunan Province (Nos. 2021JJ10007, 2021NK2015)。
文摘Simultaneous anammox and denitrification(SAD) is an efficient approach to treat wastewater having a low C/N ratio;however, few studies have investigated a combination of SAD and partial nitritation(PN). In this study, a lab-scale up-flow blanket filter(UBF) and zeolite sequence batch reactor(ZSBR) were continuously operated to implement SAD and PN advantages, respectively. The UBF achieved a high total nitrogen(TN) removal efficiency of over 70% during the start-up stage(days 1–50), and reached a TN removal efficiency of 96%in the following 90 days(days 51–140) at COD/NH_(4)^(+)-N ratio of 2.5. The absolute abundance of anammox bateria increased to the highest value of 1.58 × 107copies/μL DNA;Comamonadaceae was predominant in the UBF at the optimal ratio. Meanwhile, ZSBR was initiated on day 115 as fast nitritation process to satisfy the influent requirement for the UBF. The combined process was started on day 140 and then lasted for 30 days, during the combined process, between the two reactors, the UBF was the main contributor for TN(66.5% ± 4.5%)and COD(71.8% ± 4.9%) removal. These results demonstrated that strong SAD occurred in the UBF when following a ZSBR with in-situ NOB elimination. This research presents insights into a novel biological nitrogen removal process for low C/N ratio wastewater treatment.