期刊文献+

上向流活性炭床膨胀率影响因素研究 被引量:9

Study on the influential factors on expansion curves of up-flow GAC process in waterworks
下载PDF
导出
摘要 在上向流臭氧—生物活性炭技术中,炭层的膨胀率是水厂工艺设计及运行的重要参数。通过对生物活性炭池膨胀率的测定,研究活性炭粒径、反冲洗、运行时间及温度等因素对膨胀率的影响。结果表明:不同类型的活性炭,其膨胀特性有很大的差别。颗粒粒径较大的8×30目活性炭颗粒,在15m/h的流速下不发生膨胀;粒径30×60目活性炭颗粒在5m/h的上升流速下已经能达到25%的膨胀率。而12×40目活性炭颗粒,在12m/h的流速下膨胀率为10%,建议水厂设计时选用此粒径范围的活性炭;该条件下在运行一段时间后,活性炭颗粒密度增加,膨胀率下降约5%;反冲洗后,活性炭外层老化生物膜脱落,密度增大,膨胀率下降约2.3%;水温对活性炭的膨胀率也有影响,从12℃到17℃,水温提高5℃,膨胀率下降约2.7%。 In up-flow O3-BAC process, the expansion curve of granular activated carbon (GAC) is a key parameter for water treatment process design and operation. Through the test of the expansion curves of biological activated carbon (BAC), the influences of GAC diameter, back-washing, operation time and temperature on expansion curves were studied. The results showed that there were different expansion curves in different GAC: there was no expansion in 8 X 30 mesh GAC in 15 m/h flow rate; the expansion curve of 30×60 mesh GAC was 25% in the flow rate of 5 m/h;the expansion curve of 12×40 mesh GAC was 10% in the 12 m/h flow rate. The 12 × 40 mesh GAC was recommended for water treatment plant de- sign. In 12 m/h up-flow rate, the 12X40 mesh GAC density would increase and its expansion curve would decrease about 5 % after a period of operation. After baek-washing the aged biological film on GAC would separate from the GAC, its density would increase and expansion curve would decrease about 2. 3%. The temperature also had influences on GAD expansion curve: from 12℃ to 17 ~Cthe expansion curve would decrease about 2. 7 % with the temperature increase of 5℃.
出处 《给水排水》 CSCD 北大核心 2013年第3期115-120,共6页 Water & Wastewater Engineering
关键词 上向流 活性炭床 膨胀率 活性炭粒径 Up-flow Activated carbon bed Expansion curve Activated earhon diameter
  • 相关文献

参考文献8

  • 1查人光,徐兵,朱海涛,张频.上向流BAC吸附池在净水生产中的应用[J].给水排水,2010,36(6):14-17. 被引量:18
  • 2Kawamura S. Design and operation of high-rate filters,Part 2[J].{H}Journal of American Water Workers Associations,1975.653-662. 被引量:1
  • 3Amburgey J E,Amirtharajah A. Strategic filter backwashing technique sand resulting particle passage[J].{H}Journal of Environmental Engineering ASCE,2005,(4):535-547. 被引量:1
  • 4Raveendran P,Amirtharajah A. Role of short-range forces in particle detachment during filter backwashing[J].{H}Journal of Environmental Engineering ASCE,1995,(12):860-868.doi:10.1061/(ASCE)0733-9372(1995)121:12(860). 被引量:1
  • 5Ahmad R,Amirtharajah A. Detachment of particles during biofilter backwashing[J].{H}Journal of American Water Workers Associations,1998,(12):74-85. 被引量:1
  • 6Ko B S,Yoon H S,Park S J. A Study on the optimum backwashing method applied to activated carbon process in waterworks[J].J Water Environ Technol,2003,(2):189-202. 被引量:1
  • 7Dabrowski W,Mackie R I. Influence of temperature on the performance of variable declining rate filters for drinking water[J].Arch Hydro-Eng Environ Mech,1994,(3-4):37-51. 被引量:1
  • 8Darowski W,Spaczynska M,Mackie R I. A model to predict granular activated carbon backwash curves[J].Clean-soil Air Water,2008,(1):103-110. 被引量:1

二级参考文献7

共引文献17

同被引文献48

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部