This paper presents a novel adaptive-bandwidth charge pump PLL with low jitter and a wide tuning range. With an adaptive bandwidth,the proposed PLL can scale its loop dynamics proportional to the output frequency and ...This paper presents a novel adaptive-bandwidth charge pump PLL with low jitter and a wide tuning range. With an adaptive bandwidth,the proposed PLL can scale its loop dynamics proportional to the output frequency and maintain optimal performance over its entire output range. In order to improve the jitter performance of the PLL,a matching tech- nique is employed in the charge pump,and a voltage-to-voltage converter is used to achieve a low gain VCO. The experimental chip was fabricated in a 0. 35μm CMOS process. The measured results show that the PLL has perfect jitter performance within its operating range from 200MHz to 1.1GHz.展开更多
A wideband wavelength-tunable 4×5 distributed feedback(DFB)semiconductor laser array based on the reconstructionequivalent-chirp(REC)technique using a simple tuning scheme is demonstrated.It consists of 20 DFB la...A wideband wavelength-tunable 4×5 distributed feedback(DFB)semiconductor laser array based on the reconstructionequivalent-chirp(REC)technique using a simple tuning scheme is demonstrated.It consists of 20 DFB lasers with 4×5matrix interleaving distributions,two-level cascaded Y-branch optical combiners,and one active semiconductor opticalamplifier(SOA),all in-series integrated on one chip.Unlike the traditional thermal-electric cooler(TEC)-based wavelength-tuning scheme,the tunable 4×5 REC-DFB laser array achieves a faster and broader continuous wavelength-tuningrange using TaN thin-film heaters integrated on the AlN submount.By changing the injection current of the TaN resistorfrom 0 to 190 mA,the proposed tunable laser achieves a wavelength-tuning range of∼2.5 nm per channel and a total tuningof over 50 nm.This study opens up new avenues for realizing cost-effective and wide-tuning-range semiconductor lasers.展开更多
调频范围是压控振荡器的一个重要的性能指标,当调频范围增大时,振荡器的振幅会随着频率的不同而改变。为了保证压控振荡器在调频范围内振幅恒定,提出了一种新型的自动振幅控制的电路结构。自动振幅控制电路由峰值检测、比较器和低通滤...调频范围是压控振荡器的一个重要的性能指标,当调频范围增大时,振荡器的振幅会随着频率的不同而改变。为了保证压控振荡器在调频范围内振幅恒定,提出了一种新型的自动振幅控制的电路结构。自动振幅控制电路由峰值检测、比较器和低通滤波器几部分构成,自动振幅控制电路与压控振荡器组成的反馈环路控制压控振荡器的输出恒定。电路采用标准的0.35μm CM O S工艺流片并进行测试。测试结果表明:压控振荡器的调频范围为18.2MH z^24.3MH z,达到了28.7%,自动振幅控制电路保证压控振荡器的振幅变化仅为8.7%。展开更多
A wideband low-phase-noise LC voltage-controlled oscillator (VCO) with low VCO gain (Kvco) vari- ation for WLAN fractional-N frequency synthesizer application is proposed and designed on a 0.13-μm CMOS process. I...A wideband low-phase-noise LC voltage-controlled oscillator (VCO) with low VCO gain (Kvco) vari- ation for WLAN fractional-N frequency synthesizer application is proposed and designed on a 0.13-μm CMOS process. In order to achieve a low Kvco variation, an extra switched varactor array was added to the LC tank with the conventional switched capacitor array. Based on the proposed switched varactor array compensation technique, the measured Kvco is 43 MHz/V with only 6.29% variation across the entire tuning range. The proposed VCO provides a tuning range of 23.7% from 3.01 to 3.82 GHz, while consuming 9 mA of quiescent current from a 2.3 V supply. The VCO shows a low phase noise of-121.94 dBc/Hz at 1 MHz offset, from the 3.6 GHz carrier.展开更多
文摘This paper presents a novel adaptive-bandwidth charge pump PLL with low jitter and a wide tuning range. With an adaptive bandwidth,the proposed PLL can scale its loop dynamics proportional to the output frequency and maintain optimal performance over its entire output range. In order to improve the jitter performance of the PLL,a matching tech- nique is employed in the charge pump,and a voltage-to-voltage converter is used to achieve a low gain VCO. The experimental chip was fabricated in a 0. 35μm CMOS process. The measured results show that the PLL has perfect jitter performance within its operating range from 200MHz to 1.1GHz.
基金supported by the Chinese National Key Basic Research Special Fund(Nos.2017YFA0206401,2018YFA0704402,2018YFB2201801,and 2018YFE0201200)National Key Research and Development Program of China(No.2020YFB2205800)+2 种基金National Natural Science Foundation of China(Nos.61975075,61975076,and 62004094)Natural Science Foundation of Jiangsu Province(No.BK20200334)Jiangsu Science and Technology Project(No.BE2017003-2).
文摘A wideband wavelength-tunable 4×5 distributed feedback(DFB)semiconductor laser array based on the reconstructionequivalent-chirp(REC)technique using a simple tuning scheme is demonstrated.It consists of 20 DFB lasers with 4×5matrix interleaving distributions,two-level cascaded Y-branch optical combiners,and one active semiconductor opticalamplifier(SOA),all in-series integrated on one chip.Unlike the traditional thermal-electric cooler(TEC)-based wavelength-tuning scheme,the tunable 4×5 REC-DFB laser array achieves a faster and broader continuous wavelength-tuningrange using TaN thin-film heaters integrated on the AlN submount.By changing the injection current of the TaN resistorfrom 0 to 190 mA,the proposed tunable laser achieves a wavelength-tuning range of∼2.5 nm per channel and a total tuningof over 50 nm.This study opens up new avenues for realizing cost-effective and wide-tuning-range semiconductor lasers.
文摘调频范围是压控振荡器的一个重要的性能指标,当调频范围增大时,振荡器的振幅会随着频率的不同而改变。为了保证压控振荡器在调频范围内振幅恒定,提出了一种新型的自动振幅控制的电路结构。自动振幅控制电路由峰值检测、比较器和低通滤波器几部分构成,自动振幅控制电路与压控振荡器组成的反馈环路控制压控振荡器的输出恒定。电路采用标准的0.35μm CM O S工艺流片并进行测试。测试结果表明:压控振荡器的调频范围为18.2MH z^24.3MH z,达到了28.7%,自动振幅控制电路保证压控振荡器的振幅变化仅为8.7%。
基金supported by the State Key Development Program for Basic Research of China(No.2010CB327404)the National High Technology Research and Development Program of China(No.2011AA010202)+2 种基金the National Science and Technology Major Project of China(No.2012ZX03004004)the National Natural Science Foundation of China(Nos.61176034,61101001,61204026)the Tsinghua University Initiative Scientific Research Program
文摘A wideband low-phase-noise LC voltage-controlled oscillator (VCO) with low VCO gain (Kvco) vari- ation for WLAN fractional-N frequency synthesizer application is proposed and designed on a 0.13-μm CMOS process. In order to achieve a low Kvco variation, an extra switched varactor array was added to the LC tank with the conventional switched capacitor array. Based on the proposed switched varactor array compensation technique, the measured Kvco is 43 MHz/V with only 6.29% variation across the entire tuning range. The proposed VCO provides a tuning range of 23.7% from 3.01 to 3.82 GHz, while consuming 9 mA of quiescent current from a 2.3 V supply. The VCO shows a low phase noise of-121.94 dBc/Hz at 1 MHz offset, from the 3.6 GHz carrier.