Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, th...Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, this study put forward powerful anchor support system and anchor cable adaption technology to surrounding rock deformation. Furthermore, the control measures possess the supporting performance with ‘‘primary rigid-following flexible-new rigid, and primary resistance-following yield-new resistance'', which suits deep roadway surrounding rock control. The mechanical model of truss anchor supporting roof beams was established, and the inverted arch deflection produced by the cable pre-stress with stress increment effect and roof beam deflection were obtained. And then the system working mechanism was illustrated. Finally, the surrounding rock support parameters were determined by means of comprehensive methods, and put into practice. The results show that surrounding rock deformation realized secondary stability after three months. The roadway sides convergence value was less than 245mm, and roof subsidence was less than 124mm. In addition, there was no expansion and renovation during service period.展开更多
In order to study stability control methods for a deep gate group under complex stresses,we conducted field investigations and analyses of reasons for damage in the Xuzhou mining district.Three reasons are proposed:de...In order to study stability control methods for a deep gate group under complex stresses,we conducted field investigations and analyses of reasons for damage in the Xuzhou mining district.Three reasons are proposed:deep high stress,improper roadway layout and support technology.The stability control countermeasures of the gate group consist of an intensive design technology and responding bolt-mesh-anchor truss support technology.Our research method has been applied at the -1000 m level gate group in Qishan Coal Mine.Suitable countermeasures have been tested by field monitoring.展开更多
基金provided by the National Natural Science Foundation of China(No.51234005)National Basic Research Program of China under Grant(No.2010CB226802)Fundamental Research Funds for the Central Universities(No.2010QZ06)
文摘Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, this study put forward powerful anchor support system and anchor cable adaption technology to surrounding rock deformation. Furthermore, the control measures possess the supporting performance with ‘‘primary rigid-following flexible-new rigid, and primary resistance-following yield-new resistance'', which suits deep roadway surrounding rock control. The mechanical model of truss anchor supporting roof beams was established, and the inverted arch deflection produced by the cable pre-stress with stress increment effect and roof beam deflection were obtained. And then the system working mechanism was illustrated. Finally, the surrounding rock support parameters were determined by means of comprehensive methods, and put into practice. The results show that surrounding rock deformation realized secondary stability after three months. The roadway sides convergence value was less than 245mm, and roof subsidence was less than 124mm. In addition, there was no expansion and renovation during service period.
基金Projects 50490270 supported by the National Natural Science Foundation of ChinaProjects 2006CB202200 by the National Basic Research Program of ChinaProjects IRT0656 by the Innovation Term Project of the Ministry of Education of China
文摘In order to study stability control methods for a deep gate group under complex stresses,we conducted field investigations and analyses of reasons for damage in the Xuzhou mining district.Three reasons are proposed:deep high stress,improper roadway layout and support technology.The stability control countermeasures of the gate group consist of an intensive design technology and responding bolt-mesh-anchor truss support technology.Our research method has been applied at the -1000 m level gate group in Qishan Coal Mine.Suitable countermeasures have been tested by field monitoring.