Ground observation of dust aerosols was conducted in Beijing in the spring of 2005 in order to investigate the element composition and origin of mineral dust. Mass concentrations of most mineral elements of particles ...Ground observation of dust aerosols was conducted in Beijing in the spring of 2005 in order to investigate the element composition and origin of mineral dust. Mass concentrations of most mineral elements of particles increased during dust events. Mineral elements were predominant in the sums of total element loadings in both dusty and non-dusty days. Mg, Si, Fe, A1 or Ti can be used as an indicator of dust outflow; C1 can be viewed as an evidence of dust particles mixing with anthropogenic emissions. Mineral and pollutant elements showed a bimodal mass particle-size distribution (MSD) in non-dusty days, and a trimodal distribution in dusty days, but their peak concentrations fell in different size stages. Zn and S were mainly enriched in fine particles, whereas C1 was enriched in medium particles, but most mineral elements and Cu were enriched in coarse particles. Mineral elements were dominated by crustal material in dusty even non-dusty days, but pollutant elements were from non-crustal material including local and remote sources. Back trajectory analysis indicated that dust particles in Beijing mainly originated from the Gobi and desert regions of Mongolian and northern China.展开更多
基金supported by the Hundred Talents Program(Aerosol Characteristics and its Climatic Impact) of the Chi-nese Academy of Sciences, National Basic Research Program of China (No. 2007CB407303)National Science Foundation of China (Nos. 40605001, 40675074)the Youth Science Fund of Fudan University
文摘Ground observation of dust aerosols was conducted in Beijing in the spring of 2005 in order to investigate the element composition and origin of mineral dust. Mass concentrations of most mineral elements of particles increased during dust events. Mineral elements were predominant in the sums of total element loadings in both dusty and non-dusty days. Mg, Si, Fe, A1 or Ti can be used as an indicator of dust outflow; C1 can be viewed as an evidence of dust particles mixing with anthropogenic emissions. Mineral and pollutant elements showed a bimodal mass particle-size distribution (MSD) in non-dusty days, and a trimodal distribution in dusty days, but their peak concentrations fell in different size stages. Zn and S were mainly enriched in fine particles, whereas C1 was enriched in medium particles, but most mineral elements and Cu were enriched in coarse particles. Mineral elements were dominated by crustal material in dusty even non-dusty days, but pollutant elements were from non-crustal material including local and remote sources. Back trajectory analysis indicated that dust particles in Beijing mainly originated from the Gobi and desert regions of Mongolian and northern China.