The scenario simulation analysis of water environmental emergencies is very important for risk prevention and control,and emergency response.To quickly and accurately simulate the transport and diffusion process of hi...The scenario simulation analysis of water environmental emergencies is very important for risk prevention and control,and emergency response.To quickly and accurately simulate the transport and diffusion process of high-intensity pollutants during sudden environmental water pollution events,in this study,a high-precision pollution transport and diffusion model for unstructured grids based on Compute Unified Device Architecture(CUDA)is proposed.The finite volume method of a total variation diminishing limiter with the Kong proposed r-factor is used to reduce numerical diffusion and oscillation errors in the simulation of pollutants under sharp concentration conditions,and graphics processing unit acceleration technology is used to improve computational efficiency.The advection diffusion process of the model is verified numerically using two benchmark cases,and the efficiency of the model is evaluated using an engineering example.The results demonstrate that the model perform well in the simulation of material transport in the presence of sharp concentration.Additionally,it has high computational efficiency.The acceleration ratio is 46 times the single-thread acceleration effect of the original model.The efficiency of the accelerated model meet the requirements of an engineering application,and the rapid early warning and assessment of water pollution accidents is achieved.展开更多
The ozone(O_(3))pollution in China drew lots of attention in recent years,and the Sichuan Basin(SCB)was one of the regions confronting worsening O_(3)pollution problem.Many previous studies have shown that regional tr...The ozone(O_(3))pollution in China drew lots of attention in recent years,and the Sichuan Basin(SCB)was one of the regions confronting worsening O_(3)pollution problem.Many previous studies have shown that regional transport is an important contributor to O_(3)pollution.However,very few features of the O_(3)profile during transport have been reported,especially in the border regions between different administrative divisions.In this study,we conducted tethered balloon soundings in SCB during the summer of 2020 and captured a nocturnal O_(3)transport event during the campaign.Vertically,the O_(3)transport occurred in the bottom of the residual layer,between 200 and 500 m above ground level.Horizontally,the transport pathway was directed from southeast to northwest based on the analysis of the wind field and air mass trajectories.The effect of transport in the residual layer on the surface O_(3)concentration was related to the spatial distribution of O_(3).For cities with high O_(3)concentrations in the upwind region,the transport process would bring clean air masses and abate pollution.For downwind lightly polluted cities,the transport process would slow down the decreasing or even increase the surface O_(3)concentration during the night.We provided observational facts on the profile features of a transboundary O_(3)transport event between two provincial administrative divisions,which implicated the importance of joint prevention and control measures.However,the sounding parameters were limited and the quantitative analysis was preliminary,more integrated,and thorough studies of this topic were called for in the future.展开更多
Hydrological and hydro-chemical monitoring of nitrogen(N) and phosphorus(P) in a small urbanized catchment was conducted in the hilly area of the central Sichuan Basin,China,from 2010 through 2011.The diffuse N and P ...Hydrological and hydro-chemical monitoring of nitrogen(N) and phosphorus(P) in a small urbanized catchment was conducted in the hilly area of the central Sichuan Basin,China,from 2010 through 2011.The diffuse N and P loadings in different forms of total nitrogen(TN) and phosphorus(TP),dissolved nitrogen(DN) and phosphorus(DP),as well as particulate nitrogen(PN) and phosphorus(PP) were calculated based on runoff discharges and chemical analyses.The results revealed that the diffuse pollution concentrations of TN,DN,PN,TP,DP and PP exhibited large variations during rainfall events,with peak concentrations occurring during the initial period.For all of the measured parameters,the event mean concentrations(EMCs) were observed to clearly vary among rainfall events.The EMCs of TN,DN,PN,TP,DP and PP(for all of the observed rainfall events) were 10.04,6.62,3.42,1.30,0.47 and0.83 mg/L,respectively.The losses of diffuse N and P exhibited clear seasonal patterns and mainly occurred during the period from July through September,when the losses totaled 99.3 and 9.6 kg/ha for TN and TP,respectively,accounting for 75% and 74% of the total annual loadings.The mean annual loadings of TN and TP were 124.6 and 12.9 kg/ha,respectively.The results indicate that residential areas in the hilly areaof the central Sichuan Basin are subject to high diffuse N and P loadings,posing a serious risk to the receiving water quality.Ecological buffering belts are recommended to incorporate into the urbanized catchment to reduce diffuse pollution.展开更多
Ground observation of dust aerosols was conducted in Beijing in the spring of 2005 in order to investigate the element composition and origin of mineral dust. Mass concentrations of most mineral elements of particles ...Ground observation of dust aerosols was conducted in Beijing in the spring of 2005 in order to investigate the element composition and origin of mineral dust. Mass concentrations of most mineral elements of particles increased during dust events. Mineral elements were predominant in the sums of total element loadings in both dusty and non-dusty days. Mg, Si, Fe, A1 or Ti can be used as an indicator of dust outflow; C1 can be viewed as an evidence of dust particles mixing with anthropogenic emissions. Mineral and pollutant elements showed a bimodal mass particle-size distribution (MSD) in non-dusty days, and a trimodal distribution in dusty days, but their peak concentrations fell in different size stages. Zn and S were mainly enriched in fine particles, whereas C1 was enriched in medium particles, but most mineral elements and Cu were enriched in coarse particles. Mineral elements were dominated by crustal material in dusty even non-dusty days, but pollutant elements were from non-crustal material including local and remote sources. Back trajectory analysis indicated that dust particles in Beijing mainly originated from the Gobi and desert regions of Mongolian and northern China.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3202004)the National Natural Science Foundation of China(Grant No.51979105).
文摘The scenario simulation analysis of water environmental emergencies is very important for risk prevention and control,and emergency response.To quickly and accurately simulate the transport and diffusion process of high-intensity pollutants during sudden environmental water pollution events,in this study,a high-precision pollution transport and diffusion model for unstructured grids based on Compute Unified Device Architecture(CUDA)is proposed.The finite volume method of a total variation diminishing limiter with the Kong proposed r-factor is used to reduce numerical diffusion and oscillation errors in the simulation of pollutants under sharp concentration conditions,and graphics processing unit acceleration technology is used to improve computational efficiency.The advection diffusion process of the model is verified numerically using two benchmark cases,and the efficiency of the model is evaluated using an engineering example.The results demonstrate that the model perform well in the simulation of material transport in the presence of sharp concentration.Additionally,it has high computational efficiency.The acceleration ratio is 46 times the single-thread acceleration effect of the original model.The efficiency of the accelerated model meet the requirements of an engineering application,and the rapid early warning and assessment of water pollution accidents is achieved.
基金supported by the National Key R&D Program of China(Nos.2018YFC0214002 and 2018YFC0214001)the Key S&T Program of Sichuan Province(No.2018SZDZX0023)+1 种基金the National Natural Science Foundation of China(No.22076129)the Fundamental Research Funds for the Central Universities(Nos.YJ201871 and YJ201891)。
文摘The ozone(O_(3))pollution in China drew lots of attention in recent years,and the Sichuan Basin(SCB)was one of the regions confronting worsening O_(3)pollution problem.Many previous studies have shown that regional transport is an important contributor to O_(3)pollution.However,very few features of the O_(3)profile during transport have been reported,especially in the border regions between different administrative divisions.In this study,we conducted tethered balloon soundings in SCB during the summer of 2020 and captured a nocturnal O_(3)transport event during the campaign.Vertically,the O_(3)transport occurred in the bottom of the residual layer,between 200 and 500 m above ground level.Horizontally,the transport pathway was directed from southeast to northwest based on the analysis of the wind field and air mass trajectories.The effect of transport in the residual layer on the surface O_(3)concentration was related to the spatial distribution of O_(3).For cities with high O_(3)concentrations in the upwind region,the transport process would bring clean air masses and abate pollution.For downwind lightly polluted cities,the transport process would slow down the decreasing or even increase the surface O_(3)concentration during the night.We provided observational facts on the profile features of a transboundary O_(3)transport event between two provincial administrative divisions,which implicated the importance of joint prevention and control measures.However,the sounding parameters were limited and the quantitative analysis was preliminary,more integrated,and thorough studies of this topic were called for in the future.
基金provided by the Innovative Team Program of Chinese Academy of Sciences (Grant No.KZZD-EW-TZ-06)the National Natural Science Foundation of China (Grant No.41430750)the National Science & Technology Pillar Program (Grant No.2011BAD31B03)
文摘Hydrological and hydro-chemical monitoring of nitrogen(N) and phosphorus(P) in a small urbanized catchment was conducted in the hilly area of the central Sichuan Basin,China,from 2010 through 2011.The diffuse N and P loadings in different forms of total nitrogen(TN) and phosphorus(TP),dissolved nitrogen(DN) and phosphorus(DP),as well as particulate nitrogen(PN) and phosphorus(PP) were calculated based on runoff discharges and chemical analyses.The results revealed that the diffuse pollution concentrations of TN,DN,PN,TP,DP and PP exhibited large variations during rainfall events,with peak concentrations occurring during the initial period.For all of the measured parameters,the event mean concentrations(EMCs) were observed to clearly vary among rainfall events.The EMCs of TN,DN,PN,TP,DP and PP(for all of the observed rainfall events) were 10.04,6.62,3.42,1.30,0.47 and0.83 mg/L,respectively.The losses of diffuse N and P exhibited clear seasonal patterns and mainly occurred during the period from July through September,when the losses totaled 99.3 and 9.6 kg/ha for TN and TP,respectively,accounting for 75% and 74% of the total annual loadings.The mean annual loadings of TN and TP were 124.6 and 12.9 kg/ha,respectively.The results indicate that residential areas in the hilly areaof the central Sichuan Basin are subject to high diffuse N and P loadings,posing a serious risk to the receiving water quality.Ecological buffering belts are recommended to incorporate into the urbanized catchment to reduce diffuse pollution.
基金supported by the Hundred Talents Program(Aerosol Characteristics and its Climatic Impact) of the Chi-nese Academy of Sciences, National Basic Research Program of China (No. 2007CB407303)National Science Foundation of China (Nos. 40605001, 40675074)the Youth Science Fund of Fudan University
文摘Ground observation of dust aerosols was conducted in Beijing in the spring of 2005 in order to investigate the element composition and origin of mineral dust. Mass concentrations of most mineral elements of particles increased during dust events. Mineral elements were predominant in the sums of total element loadings in both dusty and non-dusty days. Mg, Si, Fe, A1 or Ti can be used as an indicator of dust outflow; C1 can be viewed as an evidence of dust particles mixing with anthropogenic emissions. Mineral and pollutant elements showed a bimodal mass particle-size distribution (MSD) in non-dusty days, and a trimodal distribution in dusty days, but their peak concentrations fell in different size stages. Zn and S were mainly enriched in fine particles, whereas C1 was enriched in medium particles, but most mineral elements and Cu were enriched in coarse particles. Mineral elements were dominated by crustal material in dusty even non-dusty days, but pollutant elements were from non-crustal material including local and remote sources. Back trajectory analysis indicated that dust particles in Beijing mainly originated from the Gobi and desert regions of Mongolian and northern China.