We investigate periodic inversion and phase transition of normal and displaced finite-energy Airy beams propagating in nonlocal nonlinear media with the split-step Fourier method. Numerical simulation results show tha...We investigate periodic inversion and phase transition of normal and displaced finite-energy Airy beams propagating in nonlocal nonlinear media with the split-step Fourier method. Numerical simulation results show that parameters such as the degree of nonlocality and amplitude have profound effects on the intensity distribution of the period of an Airy beam. Nonlocal nonlinear media will reduce into a harmonic potential if the nonlocality is strong enough, which results in the beam fluctuating in an approximately cosine mode. The beam profile changes from an Airy profile to a Gaussian one at a critical point, and during propagation the process repeats to form an unusual oscillation. We also briefly discus the two-dimensional case, being equivalent to a product of two one-dimensional cases.展开更多
Noncontact optical thermometers have attracted widespread attention,but existing problems such as single-mode and low-sensitivity thermometers still urgently need to be solved.Herein,a novel multiple-mode thermometer ...Noncontact optical thermometers have attracted widespread attention,but existing problems such as single-mode and low-sensitivity thermometers still urgently need to be solved.Herein,a novel multiple-mode thermometer was designed for the polymorphism LaSc_(3)(BO_(3))_(4):Eu^(2+/3+),Li^(+).X-ray diffraction(XRD)patterns revealed a slight transition betweenα-andβ-phases with the concentrations of the dopants,which is further proved by structure refinements and first-principles calculations.The coexistence of Eu^(2+)and Eu^(3+)in the phosphors and their relative percentages were confirmed by X-ray absorption near-edge structure(XANES)spectra.Benefiting from appropriate emissions from Eu^(2+)and Eu^(3+)without obvious energy transfer and their opposite changing trends with temperatures under 307 nm excitation,a triple-mode optical thermometer is obtained for this material within the temperature range of 150–450 K.The highest sensitivities of 27.65,14.05,and 7.68%·K^(−1)are achieved based on two fluorescence intensity ratio(FIR)modes of Eu^(2+)and Eu^(3+)(5d–4f/^(5)D_(0)–^(7)F_(2,4))and the fluorescence lifetime(FL)mode of Eu^(2+),respectively.To the best of our knowledge,the former is almost the highest in Eu^(2+)and Eu^(3+)co-doped thermometers.These results indicate that this material may be used as an excellent multiple-mode optical thermometer.展开更多
A new Shear Stress Transport(SST)k-ω model is devised to integrate salient features of both the non-transitional SST k-ω model and correlation-based γ-Re_(θ) transition model.An exceptionally simplified approach i...A new Shear Stress Transport(SST)k-ω model is devised to integrate salient features of both the non-transitional SST k-ω model and correlation-based γ-Re_(θ) transition model.An exceptionally simplified approach is applied to extend the New SST(NSST)model capabilities toward transition/non-transition predictions.Bradshaw’s stress-intensity factor R_(b)=|-uv|/k can be parameterized with the wall-distance dependent Reynolds number Re_(y)=√ky/v;however,as the Re_(y)is replaced by a“flow-structure-adaptive”parameter R_(μ)=v_(T)/v,the resulting R_(b)is capable of capturing various transition phenomena naturally.The prospective stress-intensity parameter R_(b)=R_(b)(Re_(y),R_(μ))is incorporated in the constitutive relations for eddy-viscosity v_(T) and production term P_(k).The proposed formulation is intrinsically plausible,having a dramatic impact on the prediction of bypass,separation-induced and natural transitions together with non-transitional flows.An extra viscous-production term P_(k)^(lim) is added with the k-equation to ensure proper generation of k at the viscous sublayer when computing separation-induced transition over a Low-Reynolds Number(LRN)airfoil.Results demonstrate that the NSST k-ω model maintains an excellent consistency with both SST k-ω and γ-Re_(θ) models.展开更多
文摘We investigate periodic inversion and phase transition of normal and displaced finite-energy Airy beams propagating in nonlocal nonlinear media with the split-step Fourier method. Numerical simulation results show that parameters such as the degree of nonlocality and amplitude have profound effects on the intensity distribution of the period of an Airy beam. Nonlocal nonlinear media will reduce into a harmonic potential if the nonlocality is strong enough, which results in the beam fluctuating in an approximately cosine mode. The beam profile changes from an Airy profile to a Gaussian one at a critical point, and during propagation the process repeats to form an unusual oscillation. We also briefly discus the two-dimensional case, being equivalent to a product of two one-dimensional cases.
基金financially supported by the National Natural Science Foundation of China(Nos.51972347 and 21771195).
文摘Noncontact optical thermometers have attracted widespread attention,but existing problems such as single-mode and low-sensitivity thermometers still urgently need to be solved.Herein,a novel multiple-mode thermometer was designed for the polymorphism LaSc_(3)(BO_(3))_(4):Eu^(2+/3+),Li^(+).X-ray diffraction(XRD)patterns revealed a slight transition betweenα-andβ-phases with the concentrations of the dopants,which is further proved by structure refinements and first-principles calculations.The coexistence of Eu^(2+)and Eu^(3+)in the phosphors and their relative percentages were confirmed by X-ray absorption near-edge structure(XANES)spectra.Benefiting from appropriate emissions from Eu^(2+)and Eu^(3+)without obvious energy transfer and their opposite changing trends with temperatures under 307 nm excitation,a triple-mode optical thermometer is obtained for this material within the temperature range of 150–450 K.The highest sensitivities of 27.65,14.05,and 7.68%·K^(−1)are achieved based on two fluorescence intensity ratio(FIR)modes of Eu^(2+)and Eu^(3+)(5d–4f/^(5)D_(0)–^(7)F_(2,4))and the fluorescence lifetime(FL)mode of Eu^(2+),respectively.To the best of our knowledge,the former is almost the highest in Eu^(2+)and Eu^(3+)co-doped thermometers.These results indicate that this material may be used as an excellent multiple-mode optical thermometer.
基金supported by Hangzhou Dianzi University Research Supporting Fund of Zhejiang Province,China(No.GK218803299037)。
文摘A new Shear Stress Transport(SST)k-ω model is devised to integrate salient features of both the non-transitional SST k-ω model and correlation-based γ-Re_(θ) transition model.An exceptionally simplified approach is applied to extend the New SST(NSST)model capabilities toward transition/non-transition predictions.Bradshaw’s stress-intensity factor R_(b)=|-uv|/k can be parameterized with the wall-distance dependent Reynolds number Re_(y)=√ky/v;however,as the Re_(y)is replaced by a“flow-structure-adaptive”parameter R_(μ)=v_(T)/v,the resulting R_(b)is capable of capturing various transition phenomena naturally.The prospective stress-intensity parameter R_(b)=R_(b)(Re_(y),R_(μ))is incorporated in the constitutive relations for eddy-viscosity v_(T) and production term P_(k).The proposed formulation is intrinsically plausible,having a dramatic impact on the prediction of bypass,separation-induced and natural transitions together with non-transitional flows.An extra viscous-production term P_(k)^(lim) is added with the k-equation to ensure proper generation of k at the viscous sublayer when computing separation-induced transition over a Low-Reynolds Number(LRN)airfoil.Results demonstrate that the NSST k-ω model maintains an excellent consistency with both SST k-ω and γ-Re_(θ) models.