The Neoproterozoic-Cambrian(N-C) and Permian-Triassic(P-T) transitions have been regarded the two most critical transitions in earth history because of the explosive biological radiation in the early Cambrian(the Camb...The Neoproterozoic-Cambrian(N-C) and Permian-Triassic(P-T) transitions have been regarded the two most critical transitions in earth history because of the explosive biological radiation in the early Cambrian(the Cambrian Explosion) and the largest mass extinction at the end-Permian.Previous studies suggest that these two critical transitions showed certain comparability in major evolutionary events.In other words,a series of biological,geological,and geochemical events that had happened in the N-C transition occurred repeatedly during the P-T transition.Those events included continental re-configuration related to the deep mantle dynamics,global-scale glaciations,large C-,Sr-,and S-isotope perturbations indicating atmospheric and oceanic changes,abnormal precipitation of carbonates,and associated multiple biological radiations and mass extinctions.The coupling of those events in both N-C and P-T transitions suggests that deep mantle dynamics could be a primary mechanism driving dramatic changes of environment on the earth's surface,which in turn caused major biological re-organizations.A detailed comparison of those events during the two critical transitions indicates that despite their general comparability,significant differences do exist in magnitude,duration,and frequency.The supercontinent Rodinia began to rift before the Snowball Earth time.By contrast,the supercontinent Pangea entered the dispersal stage after the greatest glaciation from the Late Carboniferous to Cisuralian.Quantitative data and qualitative analyses of different fossil groups show a more profound mass extinction during the N-C transition than at the end-Permian in terms of ecosystem disruption.This is indicated by the disappearance of the whole Ediacaran biota at the N-C boundary.The subsequent appearances of many new complex animals at phylum level in the early Cambrian mark the establishment of a brand new ecosystem.However,the end-Permian mass extinction is manifested mainly by the extinction of many different taxa at class and order 展开更多
The stationary Gamma-OU processes are recommended to be the volatility of the financial assets. A parametric estimation for the Gamma-OU processes based on the discrete observations is considered in this paper. The es...The stationary Gamma-OU processes are recommended to be the volatility of the financial assets. A parametric estimation for the Gamma-OU processes based on the discrete observations is considered in this paper. The estimator of an intensity parameter A and its convergence result are given, and the simulations show that the estimation is quite accurate. Assuming that the parameter A is estimated, the maximum likelihood estimation of shape parameter c and scale parameter a, whose likelihood function is not explicitly computable, is considered. By means of the Gaver-Stehfest algorithm, we construct an explicit sequence of approximations to the likelihood function and show that it converges the true (but unkown) one. Maximizing the sequence results in an estimator that converges to the true maximum likelihood estimator and the approximation shares the asymptotic properties of the true maximum likelihood estimator. Some simulation experiments reveal that this method is still quite accurate in most of rational situations for the background of volatility.展开更多
In order to ease the contradiction between people and land and ensure the needs of construction land and farmland,this paper analyzes the demand and regional land development background,and points out the problems of ...In order to ease the contradiction between people and land and ensure the needs of construction land and farmland,this paper analyzes the demand and regional land development background,and points out the problems of the development of the land in China: late start of land development and utilization practices; declining back-up resources and sharply increasing costs; new resources and environmental problems brought about by development and utilization of land in some areas. This paper presents a new opportunity and strategy for land use transition: giving full play to the agricultural and geographical advantages of farming-pastoral area; carrying out water-saving technologies and intensive use of agricultural land in water-deficient areas,in order to achieve reasonable and efficient development and utilization.展开更多
基金supported by National Basic Research Program of China (Grant Nos. 2006CB860400, 2011CB808905)Chinese Academy of Sciences (Grant No. KZCX2-YW-Q08-4)NSFC and the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘The Neoproterozoic-Cambrian(N-C) and Permian-Triassic(P-T) transitions have been regarded the two most critical transitions in earth history because of the explosive biological radiation in the early Cambrian(the Cambrian Explosion) and the largest mass extinction at the end-Permian.Previous studies suggest that these two critical transitions showed certain comparability in major evolutionary events.In other words,a series of biological,geological,and geochemical events that had happened in the N-C transition occurred repeatedly during the P-T transition.Those events included continental re-configuration related to the deep mantle dynamics,global-scale glaciations,large C-,Sr-,and S-isotope perturbations indicating atmospheric and oceanic changes,abnormal precipitation of carbonates,and associated multiple biological radiations and mass extinctions.The coupling of those events in both N-C and P-T transitions suggests that deep mantle dynamics could be a primary mechanism driving dramatic changes of environment on the earth's surface,which in turn caused major biological re-organizations.A detailed comparison of those events during the two critical transitions indicates that despite their general comparability,significant differences do exist in magnitude,duration,and frequency.The supercontinent Rodinia began to rift before the Snowball Earth time.By contrast,the supercontinent Pangea entered the dispersal stage after the greatest glaciation from the Late Carboniferous to Cisuralian.Quantitative data and qualitative analyses of different fossil groups show a more profound mass extinction during the N-C transition than at the end-Permian in terms of ecosystem disruption.This is indicated by the disappearance of the whole Ediacaran biota at the N-C boundary.The subsequent appearances of many new complex animals at phylum level in the early Cambrian mark the establishment of a brand new ecosystem.However,the end-Permian mass extinction is manifested mainly by the extinction of many different taxa at class and order
基金This work was supported by National Natural Science Foundation of China (Grant No. 10371074).
文摘The stationary Gamma-OU processes are recommended to be the volatility of the financial assets. A parametric estimation for the Gamma-OU processes based on the discrete observations is considered in this paper. The estimator of an intensity parameter A and its convergence result are given, and the simulations show that the estimation is quite accurate. Assuming that the parameter A is estimated, the maximum likelihood estimation of shape parameter c and scale parameter a, whose likelihood function is not explicitly computable, is considered. By means of the Gaver-Stehfest algorithm, we construct an explicit sequence of approximations to the likelihood function and show that it converges the true (but unkown) one. Maximizing the sequence results in an estimator that converges to the true maximum likelihood estimator and the approximation shares the asymptotic properties of the true maximum likelihood estimator. Some simulation experiments reveal that this method is still quite accurate in most of rational situations for the background of volatility.
基金supported by the National Natural Science Foundation of China(12105248,11821505,12075300,and 12335005)the Peng-Huan-Wu Theoretical Physics Innovation Center(12047503)+1 种基金the Key R&D Program of the Ministry of Science and Technology(2017YFA0402204)the Key Research Program of the Chinese Academy of Sciences(XDPB15)。
基金Supported by Special Public Welfare Industry Research Project of the Ministry of Land and Resources(201411008)
文摘In order to ease the contradiction between people and land and ensure the needs of construction land and farmland,this paper analyzes the demand and regional land development background,and points out the problems of the development of the land in China: late start of land development and utilization practices; declining back-up resources and sharply increasing costs; new resources and environmental problems brought about by development and utilization of land in some areas. This paper presents a new opportunity and strategy for land use transition: giving full play to the agricultural and geographical advantages of farming-pastoral area; carrying out water-saving technologies and intensive use of agricultural land in water-deficient areas,in order to achieve reasonable and efficient development and utilization.