期刊文献+

Parametric estimation of discretely sampled Gamma-OU processes 被引量:7

Parametric estimation of discretely sampled Gamma-OU processes
原文传递
导出
摘要 The stationary Gamma-OU processes are recommended to be the volatility of the financial assets. A parametric estimation for the Gamma-OU processes based on the discrete observations is considered in this paper. The estimator of an intensity parameter A and its convergence result are given, and the simulations show that the estimation is quite accurate. Assuming that the parameter A is estimated, the maximum likelihood estimation of shape parameter c and scale parameter a, whose likelihood function is not explicitly computable, is considered. By means of the Gaver-Stehfest algorithm, we construct an explicit sequence of approximations to the likelihood function and show that it converges the true (but unkown) one. Maximizing the sequence results in an estimator that converges to the true maximum likelihood estimator and the approximation shares the asymptotic properties of the true maximum likelihood estimator. Some simulation experiments reveal that this method is still quite accurate in most of rational situations for the background of volatility. The stationary Gamma-OU processes are recommended to be the volatility of the financial assets. A parametric estimation for the Gamma-OU processes based on the discrete observations is considered in this paper. The estimator of an intensity parameter λ and its convergence result are given, and the simulations show that the estimation is quite accurate. Assuming that the parameter λ is estimated, the maximum likelihood estimation of shape parameter c and scale parameter α, whose likelihood function is not explicitly computable, is considered. By means of the Gaver-Stehfest algorithm, we construct an explicit sequence of approximations to the likelihood function and show that it converges the true (but unkown) one. Maximizing the sequence results in an estimator that converges to the true maximum likelihood estimator and the approximation shares the asymptotic properties of the true maximum likelihood estimator. Some simulation experiments reveal that this method is still quite accurate in most of rational situations for the background of volatility.
出处 《Science China Mathematics》 SCIE 2006年第9期1231-1257,共27页 中国科学:数学(英文版)
基金 This work was supported by National Natural Science Foundation of China (Grant No. 10371074).
关键词 Gamma-OU process transition function Lévy process Lévy density stochastic volatility background driving Lévy process Laplace transformation maximum likelihood estimation Gamma-OU process, transition function, Lévy process, Lévy density, stochalihood estimation.
  • 相关文献

参考文献22

  • 1[1]Barndorff-Nielsen O E,Shephard N.Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics (with discussion).J R Statist Soc B,2001,63:167-241 被引量:1
  • 2[2]Barndorff-Nielsen O E,Shephard N.Modelling by Lévy processes for financial econometrics,In:Barndorff-Nielsen O E,Mikosch T,Resnick S,eds.Lévy Processes-Theory and Applications.Boston:Birkhauser,2001,283-318 被引量:1
  • 3[3]Lo A W.Maximum likelihood estimation of generalized It(o) processes with discretely sampled data.Econometric Theory,1988,4:231-548 被引量:1
  • 4[4]Petersen A R.A new approach to maximum-likelihood estimation for stochastic differential equations based on discrete observations.Scandinavian Journal of Statistics,1995,22:55-71 被引量:1
  • 5[5]Santa-Clara P.Simulated likelihood estimation of diffusion with an application to the short term interst rate.Mimeo,UCLA,1995 被引量:1
  • 6[6]A(i)t-Sahalia Y.Maximum likelihood estimation of discretely sampled diffusions:a closed-form approximation approach.Econometrica,2002,70:223-262 被引量:1
  • 7[7]Egorov A V,Li H,Xu Y.Maximum likelihood estimation of time-inhomogeneous diffusions.Journal of Econometrics,2003,114:107-139 被引量:1
  • 8[8]Barndorff-Nielsen O E,Shephard N.Econometric analysis of realised volatility and its use in estimating stochastic volatility models.J R Statist Soc B (Statistical Methodology),2002,64:253-280 被引量:1
  • 9[9]Roberts G O,Papaspiliopoulos O.Bayesian inference for non-Gaussian Orustein-Uhlenbeck stochastic volatility processes.J R Statist Soc B,2004,66(2):369-393 被引量:1
  • 10[10]Jongbloed G,Van Der Meulen F H,Van Der Vaart A W.Non-parametric inference for Lévy driven Ornstein-Uhlenbeck processes.Bernoulli,2005,11(5):759-791 被引量:1

同被引文献13

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部