针对快速扩展随机树(rapidly-exploring random tree,RRT)算法在无人机路径规划过程中采样次数多、生成路径曲折等问题,提出了一种将路径重规划策略和平滑度优化相结合的路径规划算法。首先,通过重新构造采样区域降低RRT算法采样次数,...针对快速扩展随机树(rapidly-exploring random tree,RRT)算法在无人机路径规划过程中采样次数多、生成路径曲折等问题,提出了一种将路径重规划策略和平滑度优化相结合的路径规划算法。首先,通过重新构造采样区域降低RRT算法采样次数,利用目标偏向寻优策略为RRT算法添加导向性;其次,在筛选初始航迹点的同时引入无人机性能约束;然后,利用B样条对重规划路径进行平滑处理;最后,利用Matlab对所提出的算法进行仿真实验。实验结果为平均采样次数为386次,平均运行时间为0.43 s,平均航迹距离为1392.16(无量纲),表明了算法可有效降低采样次数并改善路径平滑性。展开更多
针对无人机复杂环境下的全局航迹规划问题,将人工势场法与双向RRTs(Rapidly-exploring random trees)算法结合,提出一种改进双向RRTs算法。首先,目标偏置策略引导采样点以一定概率顺着目标点生成,同时随机树新节点受到障碍物斥力和目标...针对无人机复杂环境下的全局航迹规划问题,将人工势场法与双向RRTs(Rapidly-exploring random trees)算法结合,提出一种改进双向RRTs算法。首先,目标偏置策略引导采样点以一定概率顺着目标点生成,同时随机树新节点受到障碍物斥力和目标点引力的合力影响有效避开障碍物生长,提高航迹搜寻效率,其次对随机树的节点扩展考虑了无人机飞行性能约束条件,最后采用3阶贝塞尔函数进一步航迹优化。仿真结果表明:二维和三维复杂环境中改进双向RRTs算法相比传统RRT、双向RRTs算法航迹搜索耗时减少了71.3%、24.7%和41.0%、18.6%,验证了改进算法全局搜索能力的快速性和有效性,能很好的应用于无人机离线全局航迹规划场合。展开更多
针对基于多模粒子滤波(Multiple Model Particle Filter,MMPF)的机动弱检测前跟踪(Track-Before-Detect,TBD)方法存在不能直接给出目标航迹以及粒子退化导致的目标漏检问题,提出一种基于航迹平滑(Track Smoothing,TS)的MMPF(TS-MMPF)机...针对基于多模粒子滤波(Multiple Model Particle Filter,MMPF)的机动弱检测前跟踪(Track-Before-Detect,TBD)方法存在不能直接给出目标航迹以及粒子退化导致的目标漏检问题,提出一种基于航迹平滑(Track Smoothing,TS)的MMPF(TS-MMPF)机动弱目标TBD算法。该方法利用MMPF的方法对机动弱目标量测数据进行处理,输出初步的检测和跟踪结果;将MMPF的输出结果重新定义为新的量测并进行目标的航迹起始、关联及滤波并给出目标的航迹;最后,利用航迹预测值对目标航迹进行平滑处理,有效解决粒子退化导致的漏检问题。仿真结果表明该算法可以有效提高目标航迹的稳健性。展开更多
文摘针对快速扩展随机树(rapidly-exploring random tree,RRT)算法在无人机路径规划过程中采样次数多、生成路径曲折等问题,提出了一种将路径重规划策略和平滑度优化相结合的路径规划算法。首先,通过重新构造采样区域降低RRT算法采样次数,利用目标偏向寻优策略为RRT算法添加导向性;其次,在筛选初始航迹点的同时引入无人机性能约束;然后,利用B样条对重规划路径进行平滑处理;最后,利用Matlab对所提出的算法进行仿真实验。实验结果为平均采样次数为386次,平均运行时间为0.43 s,平均航迹距离为1392.16(无量纲),表明了算法可有效降低采样次数并改善路径平滑性。
文摘针对无人机复杂环境下的全局航迹规划问题,将人工势场法与双向RRTs(Rapidly-exploring random trees)算法结合,提出一种改进双向RRTs算法。首先,目标偏置策略引导采样点以一定概率顺着目标点生成,同时随机树新节点受到障碍物斥力和目标点引力的合力影响有效避开障碍物生长,提高航迹搜寻效率,其次对随机树的节点扩展考虑了无人机飞行性能约束条件,最后采用3阶贝塞尔函数进一步航迹优化。仿真结果表明:二维和三维复杂环境中改进双向RRTs算法相比传统RRT、双向RRTs算法航迹搜索耗时减少了71.3%、24.7%和41.0%、18.6%,验证了改进算法全局搜索能力的快速性和有效性,能很好的应用于无人机离线全局航迹规划场合。
文摘针对基于多模粒子滤波(Multiple Model Particle Filter,MMPF)的机动弱检测前跟踪(Track-Before-Detect,TBD)方法存在不能直接给出目标航迹以及粒子退化导致的目标漏检问题,提出一种基于航迹平滑(Track Smoothing,TS)的MMPF(TS-MMPF)机动弱目标TBD算法。该方法利用MMPF的方法对机动弱目标量测数据进行处理,输出初步的检测和跟踪结果;将MMPF的输出结果重新定义为新的量测并进行目标的航迹起始、关联及滤波并给出目标的航迹;最后,利用航迹预测值对目标航迹进行平滑处理,有效解决粒子退化导致的漏检问题。仿真结果表明该算法可以有效提高目标航迹的稳健性。