期刊文献+

三维场景中基于数学采样的动目标轨迹拟合显示方法

Display Method of Moving Target Trajectory Fitting Mathematical Sampling Based on 3D Scene
下载PDF
导出
摘要 文章提供了一种三维场景中动目标轨迹的显示方法。该方法对动目标产生轨迹点经纬度数据,采用基于帧插值的离散数据平滑和空间坐标向量转换方法,形成位置连续稳定、姿态变换柔和的曲线轨迹;采用实时计算扩展比例计算方法,使目标轨迹在与观察者处于不同距离时均显示相同的像素宽度,同时采用正反颜色值对比的方法,通过在航向、俯仰、横滚等自由度变化时对正反面取不同的颜色值,逼真地实现了飘带状轨迹的柔和效果。 This paper provide a method of track moving path emulatecl in 3o environment, Dabeu un ua~ position in longitude and latitude, through frame data smoothing process and spherical coordinate transform, create a continuous and stable moving path; And the real time scale compute method, give a consistent line wide in different view distant;The color contrast in both side can give a lifelikeness description of track's yaw, roll and pitch.
出处 《信息化研究》 2016年第1期28-30,39,共4页 INFORMATIZATION RESEARCH
关键词 三维场景 动目标显示 航迹平滑 the 3D scene moving target display track smoothing
  • 相关文献

参考文献6

二级参考文献21

  • 1Deb K. Multi-objective optimization using evolutionary algorithms[M]. Chichester USA: Wiley, 2001. 被引量:1
  • 2Sierra M R, Coello C A C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art[J]. International Journal of Computational Intelligence Research, 2006, 2(3): 287-308. 被引量:1
  • 3Coello C A C, Lechuga M S. MOPSO: A proposal for multiple objective particle swarm optimization[C]//Congress on Evolutionary Computation. Piscataway, NJ, USA: 1EEE, 2002: 1051- 1056. 被引量:1
  • 4Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transaction on Evolutionary Computation, 2004, 8(3): 256-279. 被引量:1
  • 5Pulido G T, Coello C A C. Using clustering technique to improve the performance of a multi-objective particle swarm optimizer[M]//Lecture Notes on Computer Science: vol.3102. 2004: 225-237. 被引量:1
  • 6Raquel C R, Jr Naval P C. An effective use of crowding distance in multiobjective particle swarm optimization[C]//Proceedings of the 2005 Workshops on Genetic and Evolutionary Computation. New York, NJ, USA: ACM, 2005: 257-264. 被引量:1
  • 7Lechuga M S, Rowe J. Particle swarm optimization and fitness sharing to solve multi-objective optimization problems[C] //IEEE Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2005:1204-1211. 被引量:1
  • 8Yen G G, Leong W E Dynamic multiple swarms in multiobjective particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: System and Humans, 2009, 39(4): 890-911. 被引量:1
  • 9Li Z Y, Xu K, Liu S B,et al. Quantum multi-objective evolutionary algorithm with particle swarm optimization method[C] //4th International Conference on Natural Computation. Piseataway, NJ, USA: IEEE, 2008: 672-676. 被引量:1
  • 10Omkar S N, Khandelwal R, Ananth T V S, et al. Quantum behaved particle swarm optimization (QPSO) for multi-objective design optimization of composite structures[J]. Expert Systems with Applications, 2009, 36(8): 11312-11322. 被引量:1

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部