为有效评估高重频对抗制导武器的效果,研究干扰频率、波门宽度、编码方式和干扰时机等因素对激光高重频干扰效果的影响,首先,通过深入分析导引头抗干扰关键技术和高重频干扰机理,建立了码型识别模型、波门设置模型和高重频干扰模型;而后...为有效评估高重频对抗制导武器的效果,研究干扰频率、波门宽度、编码方式和干扰时机等因素对激光高重频干扰效果的影响,首先,通过深入分析导引头抗干扰关键技术和高重频干扰机理,建立了码型识别模型、波门设置模型和高重频干扰模型;而后,设计了弹道仿真流程,基于过重力补偿比例制导导弹弹道仿真平台,评估了不同影响因素对高重频干扰效果的影响。仿真结果表明:干扰频率和波门宽度对高重频干扰效果的影响较大,频率越高、波门宽度越大干扰效果越好;LFSR状态码对高重频干扰的抗干扰性能比二间隔码好;且在干扰频率达到100 k Hz时,高重频对波门宽度为20μs的二变间隔码的干扰效率能达到100%,脱靶量达到510.4 m;而干扰时机对干扰效果影响较小。文中的研究成果可为高重频干扰装备研制和战术使用提供一定的参考和依据。展开更多
In this paper, a novel 10 Transistor Static Random Access Memory (SRAM) cell is proposed. Read and Write bit lines are decoupled in the proposed cell. Feedback loop-cutting with single bit line write scheme is employe...In this paper, a novel 10 Transistor Static Random Access Memory (SRAM) cell is proposed. Read and Write bit lines are decoupled in the proposed cell. Feedback loop-cutting with single bit line write scheme is employed in the 10 Transistor SRAM cell to reduce active power consumption during the write operation. Read access time and write access time are measured for proposed cell architecture based on Eldo SPICE simulation using TSMC based 90 nm Complementary Metal Oxide Semiconductor (CMOS) technology at various process corners. Leakage current measurements made on hold mode of operation show that proposed cell architecture is having 12.31 nano amperes as compared to 40.63 nano amperes of the standard 6 Transistor cell. 10 Transistor cell also has better performance in terms of leakage power as compared to 6 Transistor cell.展开更多
A theological train of reasoning is avoided in this paper. The properties of the equal operator presented earlier by Alnobani are given here. A view of the present time is given. As a consequence of the presence of ti...A theological train of reasoning is avoided in this paper. The properties of the equal operator presented earlier by Alnobani are given here. A view of the present time is given. As a consequence of the presence of time state, the verses are arranged in couples and every verse including in which we live is a live verse in the same context of human life. This paper interferes with and changes the procedures and philosophy of mathematics itself. Space, mass and time are parts of one whole which is called simply time. The aim of this paper is to make the knowledge of its subject public, so other researchers can contribute to it. The concept of a gate between verses is investigated.展开更多
文摘为有效评估高重频对抗制导武器的效果,研究干扰频率、波门宽度、编码方式和干扰时机等因素对激光高重频干扰效果的影响,首先,通过深入分析导引头抗干扰关键技术和高重频干扰机理,建立了码型识别模型、波门设置模型和高重频干扰模型;而后,设计了弹道仿真流程,基于过重力补偿比例制导导弹弹道仿真平台,评估了不同影响因素对高重频干扰效果的影响。仿真结果表明:干扰频率和波门宽度对高重频干扰效果的影响较大,频率越高、波门宽度越大干扰效果越好;LFSR状态码对高重频干扰的抗干扰性能比二间隔码好;且在干扰频率达到100 k Hz时,高重频对波门宽度为20μs的二变间隔码的干扰效率能达到100%,脱靶量达到510.4 m;而干扰时机对干扰效果影响较小。文中的研究成果可为高重频干扰装备研制和战术使用提供一定的参考和依据。
文摘In this paper, a novel 10 Transistor Static Random Access Memory (SRAM) cell is proposed. Read and Write bit lines are decoupled in the proposed cell. Feedback loop-cutting with single bit line write scheme is employed in the 10 Transistor SRAM cell to reduce active power consumption during the write operation. Read access time and write access time are measured for proposed cell architecture based on Eldo SPICE simulation using TSMC based 90 nm Complementary Metal Oxide Semiconductor (CMOS) technology at various process corners. Leakage current measurements made on hold mode of operation show that proposed cell architecture is having 12.31 nano amperes as compared to 40.63 nano amperes of the standard 6 Transistor cell. 10 Transistor cell also has better performance in terms of leakage power as compared to 6 Transistor cell.
文摘A theological train of reasoning is avoided in this paper. The properties of the equal operator presented earlier by Alnobani are given here. A view of the present time is given. As a consequence of the presence of time state, the verses are arranged in couples and every verse including in which we live is a live verse in the same context of human life. This paper interferes with and changes the procedures and philosophy of mathematics itself. Space, mass and time are parts of one whole which is called simply time. The aim of this paper is to make the knowledge of its subject public, so other researchers can contribute to it. The concept of a gate between verses is investigated.