Ti(C,N)-based cermets were coated with TiAlN using multi-arc ion plating technology. Sliding wear tests were performed on the coated cermets. The microstructure and morphologies of the coated cermets before and afte...Ti(C,N)-based cermets were coated with TiAlN using multi-arc ion plating technology. Sliding wear tests were performed on the coated cermets. The microstructure and morphologies of the coated cermets before and after friction and wear tests were characterized. The results show that the TiAlN coating surface was smooth and its root mean square roughness was 16.6 nm. The hardness (HK) of TiAlN coating layers reached approximately 3200 and the critical load (Lc) under which the coating failure occurred was 59 N. The sliding wear test results show that the friction coefficients of the TiAlN-coated cermets were lower than that of the cermets without any coating. Under the same load, the adhesion phenomenon of the counterpart materials on the specimens was improved and the mean friction coefficient increased with increasing sliding velocity. When the sliding velocity was 0.26 m·s^-1, the mass of the coated cermets reduced. At the same sliding velocity, the average friction coefficient of the TiAlN-coated cerrnets was lower under a higher load. The wear mechanisms of the TiAlN-coated cermets were mainly adhesive and abrasive wear.展开更多
TiAIN]Cu nanocomposite coatings with Cu concentration of 0-1.4 at.% were deposited on the high- speed steel (HSS) substrates by filtered cathodic arc ion plating technique. The chemical composition, microstructure, ...TiAIN]Cu nanocomposite coatings with Cu concentration of 0-1.4 at.% were deposited on the high- speed steel (HSS) substrates by filtered cathodic arc ion plating technique. The chemical composition, microstructure, morphology, adhesion strength, mechanical and tribological properties of the TiAIN/Cu coatings were characterized and analyzed. The results reveal that the coating structure and properties depend on not only the Cu concentration, hut also the deposition condition. The addition of Cu significantly decreases the grain size and weakens the texture in the TiAlN/Cu coatings. With increasing the Cu concentration, the coating hardness decreases slightly from 30.7 GPa of the pure TiAlN coating to 28.5 GPa of the TiAlN/Cu coating with 1.4 at,% Cu. All the TiAlN/Cu coatings present sufficient adhesion strength. In addition, the existing state of additive Cu in the TiAlN/Cu coatings is also investigated.展开更多
A TIA1N/MoS2-Ti coating was developed to improve the tribological characteristics of a single TiAlN coating. The MoS2-Ti layer was deposited by a DC magnetron sputtering system on the hard TiAIN coated SKD-11 steel su...A TIA1N/MoS2-Ti coating was developed to improve the tribological characteristics of a single TiAlN coating. The MoS2-Ti layer was deposited by a DC magnetron sputtering system on the hard TiAIN coated SKD-11 steel substrate. The titanium content in the MoS2-Ti layer was 11.3 at.% determined by EPMA. The surface morphology was observed by FE-SEM. The TiAlN layer exhibited excellent adhesion and hardness. However, the deposition of an MoS2-Zi layer on the TRAIN led to a significant improvement in tribological properties without affecting the adhesion to the substrate. The MoS2-Ti layer significantly decreased the friction coefficient of the TiAIN coating, and the drop was 48% after MoS2-Ti deposition. Also, the MoS2-Ti layer remarkably decreased the wear rate of the TtA1N coating.展开更多
基金supported by the Natural Science Foundation of Hebei Province, China (No. E2008000745)the Science Technology Research and Development Plan of Handan City, China (No. 072113046-2)
文摘Ti(C,N)-based cermets were coated with TiAlN using multi-arc ion plating technology. Sliding wear tests were performed on the coated cermets. The microstructure and morphologies of the coated cermets before and after friction and wear tests were characterized. The results show that the TiAlN coating surface was smooth and its root mean square roughness was 16.6 nm. The hardness (HK) of TiAlN coating layers reached approximately 3200 and the critical load (Lc) under which the coating failure occurred was 59 N. The sliding wear test results show that the friction coefficients of the TiAlN-coated cermets were lower than that of the cermets without any coating. Under the same load, the adhesion phenomenon of the counterpart materials on the specimens was improved and the mean friction coefficient increased with increasing sliding velocity. When the sliding velocity was 0.26 m·s^-1, the mass of the coated cermets reduced. At the same sliding velocity, the average friction coefficient of the TiAlN-coated cerrnets was lower under a higher load. The wear mechanisms of the TiAlN-coated cermets were mainly adhesive and abrasive wear.
基金supported by the National Key Basic Research Program of China(“973”Program,No.2012CB625100)the Natural Science Foundation of Liaoning Province(No.2013020093)
文摘TiAIN]Cu nanocomposite coatings with Cu concentration of 0-1.4 at.% were deposited on the high- speed steel (HSS) substrates by filtered cathodic arc ion plating technique. The chemical composition, microstructure, morphology, adhesion strength, mechanical and tribological properties of the TiAIN/Cu coatings were characterized and analyzed. The results reveal that the coating structure and properties depend on not only the Cu concentration, hut also the deposition condition. The addition of Cu significantly decreases the grain size and weakens the texture in the TiAlN/Cu coatings. With increasing the Cu concentration, the coating hardness decreases slightly from 30.7 GPa of the pure TiAlN coating to 28.5 GPa of the TiAlN/Cu coating with 1.4 at,% Cu. All the TiAlN/Cu coatings present sufficient adhesion strength. In addition, the existing state of additive Cu in the TiAlN/Cu coatings is also investigated.
基金Supported by the Ministry of Science and Technological Development of the Republic Serbia and“Super-Intense Laser-Matter Interactions”-SILMI Project,European Scientific Foundation
文摘A TIA1N/MoS2-Ti coating was developed to improve the tribological characteristics of a single TiAlN coating. The MoS2-Ti layer was deposited by a DC magnetron sputtering system on the hard TiAIN coated SKD-11 steel substrate. The titanium content in the MoS2-Ti layer was 11.3 at.% determined by EPMA. The surface morphology was observed by FE-SEM. The TiAlN layer exhibited excellent adhesion and hardness. However, the deposition of an MoS2-Zi layer on the TRAIN led to a significant improvement in tribological properties without affecting the adhesion to the substrate. The MoS2-Ti layer significantly decreased the friction coefficient of the TiAIN coating, and the drop was 48% after MoS2-Ti deposition. Also, the MoS2-Ti layer remarkably decreased the wear rate of the TtA1N coating.