The effects of solution-aging treatment on the microstructures, mechanical properties and internal friction of Ti- 55.06%Ni-0.3%Cr (mole fraction) alloy were investigated by means of tensile test, dynamic mechanical...The effects of solution-aging treatment on the microstructures, mechanical properties and internal friction of Ti- 55.06%Ni-0.3%Cr (mole fraction) alloy were investigated by means of tensile test, dynamic mechanical analysis (DMA) and spherical aberration electron microscopy (SAEM). The results show that the aged alloys with Cr3Ni2 phase always exhibit higher tensile strength and hardness than those of solution-treated alloy without Cr3Ni2 phase, and the aging peak temperature presents at 375 ℃. It is also found that the internal friction peak (tan 6) value decreases with increasing the frequency. There are two internal friction peaks corresponding to the B2(austenite)→R and R→M(martensite) transformations upon cooling, but only one corresponding to the reverse M→B2 transformation upon heating in both solution-treated and 375 ℃-aged alloys, due to the superposition of Mand R phase transformation. Besides, the position of internal friction peaks in the alloy after aging at 375 ℃ shifts to higher temperature. This is attributed to the decrease of Cr and Ni content, and the decline of lattice deformation and transformation resistance, all of which are related to the precipitation of Cr3Ni2 phase in the solution-aged alloys.展开更多
制备了新能源汽车零部件储氢电池用Mg2Ni和Mg1.7Al0.2Ti0.1Ni0.8Cr0.2镁合金,并进行了显微组织、物相组成、充放电性能和耐腐蚀性能的测试。结果表明,与未添加合金元素的Mg2Ni合金相比,Mg1.7Al0.2Ti0.1Ni0.8Cr0.2合金的放电容量最大值从...制备了新能源汽车零部件储氢电池用Mg2Ni和Mg1.7Al0.2Ti0.1Ni0.8Cr0.2镁合金,并进行了显微组织、物相组成、充放电性能和耐腐蚀性能的测试。结果表明,与未添加合金元素的Mg2Ni合金相比,Mg1.7Al0.2Ti0.1Ni0.8Cr0.2合金的放电容量最大值从126 m Ah/g增加至768 m Ah/g;20次充放电循环后放电容量的衰减率下降78.44%,腐蚀电位正移251m V,Mg1.7Al0.2Ti0.1Ni0.8Cr0.2合金的充放电性和耐腐蚀性得到显著提高。展开更多
文摘The effects of solution-aging treatment on the microstructures, mechanical properties and internal friction of Ti- 55.06%Ni-0.3%Cr (mole fraction) alloy were investigated by means of tensile test, dynamic mechanical analysis (DMA) and spherical aberration electron microscopy (SAEM). The results show that the aged alloys with Cr3Ni2 phase always exhibit higher tensile strength and hardness than those of solution-treated alloy without Cr3Ni2 phase, and the aging peak temperature presents at 375 ℃. It is also found that the internal friction peak (tan 6) value decreases with increasing the frequency. There are two internal friction peaks corresponding to the B2(austenite)→R and R→M(martensite) transformations upon cooling, but only one corresponding to the reverse M→B2 transformation upon heating in both solution-treated and 375 ℃-aged alloys, due to the superposition of Mand R phase transformation. Besides, the position of internal friction peaks in the alloy after aging at 375 ℃ shifts to higher temperature. This is attributed to the decrease of Cr and Ni content, and the decline of lattice deformation and transformation resistance, all of which are related to the precipitation of Cr3Ni2 phase in the solution-aged alloys.
文摘制备了新能源汽车零部件储氢电池用Mg2Ni和Mg1.7Al0.2Ti0.1Ni0.8Cr0.2镁合金,并进行了显微组织、物相组成、充放电性能和耐腐蚀性能的测试。结果表明,与未添加合金元素的Mg2Ni合金相比,Mg1.7Al0.2Ti0.1Ni0.8Cr0.2合金的放电容量最大值从126 m Ah/g增加至768 m Ah/g;20次充放电循环后放电容量的衰减率下降78.44%,腐蚀电位正移251m V,Mg1.7Al0.2Ti0.1Ni0.8Cr0.2合金的充放电性和耐腐蚀性得到显著提高。