期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Propagation of Acoustic Waves Caused by the Accelerations of Vibrating Hand-Held Tools in Viscoelastic Soft Tissues of Human Hands and a Mechanobiological Picture for the Related Injuries
1
作者 Eugen Mamontov Viktor Berbyuk 《Journal of Applied Mathematics and Physics》 2017年第10期1997-2043,共47页
As is well known, hand-arm vibration syndrome (HAVS), or vibration-induced white finger (VWF), which is a secondary form of Raynaud’s syndrome, is an industrial injury triggered by regular use of vibrating hand-held ... As is well known, hand-arm vibration syndrome (HAVS), or vibration-induced white finger (VWF), which is a secondary form of Raynaud’s syndrome, is an industrial injury triggered by regular use of vibrating hand-held tools. According to the related biopsy tests, the main vibration-caused lesion is an increase in the thickness of the artery walls of the small arteries and arterioles resulted from enlarged vascular smooth muscle cells (VSMCs) in the wall layer known as tunica media. The present work develops a mechanobiological picture for the cell enlargement. The work deals with acoustic variables in solid materials, i.e., the non-equilibrium components of mechanical variables in the materials in the case where these components are weakly non-equilibrium. The work derives an explicit expression for the infinite-time cell-volume relative enlargement. This enlargement is directly affected by the acoustic pressure in the soft living tissue (SLT). In order to reduce the enlargement, one can reduce either the ratio of the acoustic pressure in the SLT to the cell bulk modulus or the relaxation time induced by the cell osmosis, or both the characteristics. Also, a mechanoprotective role of the above relaxation time in the cell-volume maintenance is noted. The above mechanobiological picture focuses attention on the pressure in an SLT and, thus, modeling of propagation of acoustic waves caused by the acceleration of a vibrating hand-held tool. The present work analyzes the propagation along the thickness of an infinite planar layer of an SLT. The work considers acoustic modeling. As a general viscoelastic acoustic model, the work suggests linear non-stationary partial integro-differential equation (PIDE) for the weakly non-equilibrium component of the average normal stress (ANS) or, briefly, the acoustic ANS. The PIDE is, in the exponential approximation for the normalized stress-relaxation function (NSRF) reduced to the third-order linear non-stationary partial differential equation (PDE), which is of the Zener type. T 展开更多
关键词 MECHANOBIOLOGY VISCOELASTIC Soft Living Tissue Acoustic Wave Stress-Relaxation Time third-order partial differential equation
下载PDF
The Third-Order Viscoelastic Acoustic Model Enables an Ice-Detection System for a Smart Deicing of Wind-Turbine Blade Shells
2
作者 Eugen Mamontov Viktor Berbyuk 《Journal of Applied Mathematics and Physics》 2016年第10期1949-1976,共28页
The present work is based on the third-order partial differential equation (PDE) of acoustics of viscoelastic solids for the quasi-equilibrium (QE) component of the average normal stress. This PDE includes the stress-... The present work is based on the third-order partial differential equation (PDE) of acoustics of viscoelastic solids for the quasi-equilibrium (QE) component of the average normal stress. This PDE includes the stress-relaxation time (SRT) for the material and is applicable at any value of the SRT. The notion of a smart deicing system (SDS) for blade shells (BSs) of a wind turbine is specified. The work considers the stress in a BS as the one caused by the operational load on the BS. The work develops key design issues of a prospective ice-detection system (IDS) able to supply an array of the heating elements of an SDS with the element-individual spatiotemporal data and procedures for identification of the material parameters of atmospheric-ice (AI) layer accreted on the outer surfaces of the BSs. Both the SDS and IDS flexibly allow for complex, curvilinear and space-time-varying shapes of BSs. The proposed IDS presumes monitoring of the QE components of the normal stresses in BSs. The IDS is supposed to include an array of pressure-sensing resistors, also known as force-sensing resistors (FSRs), and communication hardware, as well as the parameter-identification software package (PISP), which provides the identification on the basis of the aforementioned PDE and the data measured by the FSRs. The IDS does not have hardware components located outside the outer surfaces of, or implanted in, BSs. The FSR array and communication hardware are reliable, and both cost- and energy-efficient. The present work extends methods of structural-health/operational-load monitoring (SH/OL-M) with measurements of the operational-load-caused stress in closed solid shells and, if the prospective PISP is used, endows the methods with identification of material parameters of the shells. The identification algorithms that can underlie the PISP are computationally efficient and suitable for implementation in the real-time mode. The identification model and algorithms can deal with not only the single-layer systems such as the BS layer wi 展开更多
关键词 Non-Equilibrium Deformable Solid System Quasi-Equilibrium Mechanical Variable Average Normal Stress Pressure-Sensing Resistor Acoustics of Viscoelastic Solids third-order partial differential equation Shell of a Blade of a Wind Turbine Atmospheric Ice Smart Deicing Structural-Health/Operational-Load Monitoring Identification of Material Parameters
下载PDF
一类三阶变系数偏微分方程的格子Boltzmann模型 被引量:1
3
作者 武芳芳 王可心 《吉林大学学报(理学版)》 CAS 北大核心 2021年第4期763-768,共6页
用格子Boltzmann方法求解一类具有变系数和源项的三阶偏微分方程.利用Chapman-Enskog展开技术,通过选取适当的平衡态分布函数和补偿函数,恢复出具有三阶精度的宏观方程.数值模拟结果验证了该模型的有效性.
关键词 格子BOLTZMANN方法 Chapman-Enskog展开 变系数 三阶偏微分方程
下载PDF
Quartic Non-Polynomial Spline for Solving the Third-Order Dispersive Partial Differential Equation
4
作者 Zaki Mrzog Alaofi Talaat Sayed Ali +1 位作者 Faisal Abd Alaal Silvestru Sever Dragomir 《American Journal of Computational Mathematics》 2021年第3期189-206,共18页
<span style="font-family:Verdana;">In the present paper, we introduce a non-polynomial quadratic spline method for solving </span><span style="font-family:Verdana;"><span style... <span style="font-family:Verdana;">In the present paper, we introduce a non-polynomial quadratic spline method for solving </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> boundary value problems. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Third-order</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> singularly perturbed boundary value problems occur frequently in many areas of applied sciences such as solid mechanics, quantum mechanics, chemical reactor </span><span style="font-family:Verdana;">theory, Newtonian fluid mechanics, optimal control, convection</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">diffusion</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> processes, hydrodynamics, aerodynamics, etc. These problems have various important applications in fluid dynamics. The procedure involves a reduction of a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> partial differential equation to a first</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">order ordinary differential </span><span style="font-family:Verdana 展开更多
关键词 Non-Polynomial Spline third-order Dispersive partial differential equation Stability Convergent
下载PDF
有关常系数非齐次三阶偏微分方程在工程中的解法及推广
5
作者 韩志伟 《科技与创新》 2014年第23期104-105,共2页
在工程应用中,有关偏微分方程解的具体形式往往能够使复杂问题简单化。在许多工程的实际问题中,虽然不同偏微分方程代表的实际意义各不相同,但却具有完全相同形式的数学规律,因此,研究一般意义上的方程有助于解决实际应用问题。主要研... 在工程应用中,有关偏微分方程解的具体形式往往能够使复杂问题简单化。在许多工程的实际问题中,虽然不同偏微分方程代表的实际意义各不相同,但却具有完全相同形式的数学规律,因此,研究一般意义上的方程有助于解决实际应用问题。主要研究了一般形式的常系数非齐次三阶偏微分方程的解,并探讨了常系数非齐次N阶偏微分方程的特殊情况,得到了不同条件下解的形式。 展开更多
关键词 三阶偏微分方程 常系数 非齐次 余函数
下载PDF
三阶偏微分方程的振动结果
6
作者 罗李平 俞元洪 《应用数学》 CSCD 北大核心 2010年第3期491-495,共5页
本文建立了一类三阶非齐次偏微分方程的一切解振动的若干充分条件,同时也给出了实际应用例子.
关键词 三阶偏微分方程 DIRICHLET边界条件 NEUMANN边界条件 振动定理
下载PDF
带有转向点的一类三阶偏微分方程边值问题的奇摄动
7
作者 林宗池 《福建师范大学学报(自然科学版)》 CAS CSCD 1992年第3期1-6,共6页
本文研究极限方程在部分边界上为椭圆—抛物的一类三阶偏微分方程第一边值问题的奇摄动。在适当的假设下,证得解的存在并给出任意阶的一致有效的渐近展开式。
关键词 三阶 偏微分方程 奇异摄动
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部