期刊文献+

Quartic Non-Polynomial Spline for Solving the Third-Order Dispersive Partial Differential Equation

Quartic Non-Polynomial Spline for Solving the Third-Order Dispersive Partial Differential Equation
下载PDF
导出
摘要 <span style="font-family:Verdana;">In the present paper, we introduce a non-polynomial quadratic spline method for solving </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> boundary value problems. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Third-order</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> singularly perturbed boundary value problems occur frequently in many areas of applied sciences such as solid mechanics, quantum mechanics, chemical reactor </span><span style="font-family:Verdana;">theory, Newtonian fluid mechanics, optimal control, convection</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">diffusion</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> processes, hydrodynamics, aerodynamics, etc. These problems have various important applications in fluid dynamics. The procedure involves a reduction of a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> partial differential equation to a first</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">order ordinary differential </span><span style="font-family:Verdana <span style="font-family:Verdana;">In the present paper, we introduce a non-polynomial quadratic spline method for solving </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> boundary value problems. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Third-order</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> singularly perturbed boundary value problems occur frequently in many areas of applied sciences such as solid mechanics, quantum mechanics, chemical reactor </span><span style="font-family:Verdana;">theory, Newtonian fluid mechanics, optimal control, convection</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">diffusion</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> processes, hydrodynamics, aerodynamics, etc. These problems have various important applications in fluid dynamics. The procedure involves a reduction of a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> partial differential equation to a first</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">order ordinary differential </span><span style="font-family:Verdana
作者 Zaki Mrzog Alaofi Talaat Sayed Ali Faisal Abd Alaal Silvestru Sever Dragomir Zaki Mrzog Alaofi;Talaat Sayed Ali;Faisal Abd Alaal;Silvestru Sever Dragomir(Department of Mathematics, College of Science and Arts, King Khalid University, Muhayil Asir, Saudia Arabia;Mathematics, College of Engineering & Science, Victoria University, Melbourne, Australia;Department of Mathematics, Faculty of Sciences and Arts, Taibah University, Medina, Saudi Arabia;Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt)
出处 《American Journal of Computational Mathematics》 2021年第3期189-206,共18页 美国计算数学期刊(英文)
关键词 Non-Polynomial Spline Third-Order Dispersive Partial Differential Equation Stability Convergent Non-Polynomial Spline Third-Order Dispersive Partial Differential Equation Stability Convergent
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部