In this paper, we study the commutativity of dual Toeplitz operators on weighted Bergman spaces of the unit ball. We obtain the necessary and sufficient conditions for the commutativity, essential commutativity and es...In this paper, we study the commutativity of dual Toeplitz operators on weighted Bergman spaces of the unit ball. We obtain the necessary and sufficient conditions for the commutativity, essential commutativity and essential semi-commutativity of dual Toeplitz operator on the weighted Bergman spaces of the unit ball.展开更多
In this paper, we characterize the boundedness and compactness of the weighted composi- tion operators from the weighted Bergman space to the standard mixed-norm space or the mixed-norm space with normal weight on the...In this paper, we characterize the boundedness and compactness of the weighted composi- tion operators from the weighted Bergman space to the standard mixed-norm space or the mixed-norm space with normal weight on the unit ball and estimate the essential norms of the weighted composition operators.展开更多
令M_(u)为C^(n)中开单位球B上全纯函数符号为u的乘法算子,C_(φ)为B的全纯自映射符号为φ的复合算子,R^(m),m∈N为第m阶迭代径向导数算子.本文刻画了从加权Bergman空间到加权型空间上的算子C_(φ)R^(m)M_(u)的度量有界性和度量紧性.作...令M_(u)为C^(n)中开单位球B上全纯函数符号为u的乘法算子,C_(φ)为B的全纯自映射符号为φ的复合算子,R^(m),m∈N为第m阶迭代径向导数算子.本文刻画了从加权Bergman空间到加权型空间上的算子C_(φ)R^(m)M_(u)的度量有界性和度量紧性.作为证明的一个应用,本文也刻m画了算子S→u,φ,m=∑m i=0 Mu i C_(φ)R^(i)的类似性质.展开更多
A necessary and sufficient condition for the boundedness of the operator: $(T_{s,u,u} f)(\xi ) = h^{u + \tfrac{v}{a}} (\xi )\smallint _{\Omega _a } h^s (\xi ')K_{s,u,v} (\xi ,\xi ')f(\xi ')dv(\xi ') on...A necessary and sufficient condition for the boundedness of the operator: $(T_{s,u,u} f)(\xi ) = h^{u + \tfrac{v}{a}} (\xi )\smallint _{\Omega _a } h^s (\xi ')K_{s,u,v} (\xi ,\xi ')f(\xi ')dv(\xi ') on L^p (\Omega _a ,dv_\lambda ),1< p< \infty $ , is obtained, where $\Omega _a = \left\{ {\xi = (z,w) \in \mathbb{C}^{n + m} :z \in \mathbb{C}^n ,w \in \mathbb{C}^m ,|z|^2 + |w|^{2/a}< 1} \right\},h(\xi ) = (1 - |z|^2 )^a - |w|^2 $ andK x,u,v (ξ,ξ′).This generalizes the works in literature from the unit ball or unit disc to the weakly pseudoconvex domain ω a . As an appli cation, it is proved thatf?L H p (ω a ,dv λ) implies $h\tfrac{{|a|}}{a} + |\beta |(\xi )D_2^a D_z^\beta f \in L^p (\Omega _a ,dv_\lambda ),1 \leqslant p< \infty $ , for any multi-indexa=(α1,?,α n and ? = (?1, —?). An interesting question is whether the converse holds.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos. 10671028, 10971020)
文摘In this paper, we study the commutativity of dual Toeplitz operators on weighted Bergman spaces of the unit ball. We obtain the necessary and sufficient conditions for the commutativity, essential commutativity and essential semi-commutativity of dual Toeplitz operator on the weighted Bergman spaces of the unit ball.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10971153, 10671141)
文摘In this paper, we characterize the boundedness and compactness of the weighted composi- tion operators from the weighted Bergman space to the standard mixed-norm space or the mixed-norm space with normal weight on the unit ball and estimate the essential norms of the weighted composition operators.
文摘令M_(u)为C^(n)中开单位球B上全纯函数符号为u的乘法算子,C_(φ)为B的全纯自映射符号为φ的复合算子,R^(m),m∈N为第m阶迭代径向导数算子.本文刻画了从加权Bergman空间到加权型空间上的算子C_(φ)R^(m)M_(u)的度量有界性和度量紧性.作为证明的一个应用,本文也刻m画了算子S→u,φ,m=∑m i=0 Mu i C_(φ)R^(i)的类似性质.
文摘A necessary and sufficient condition for the boundedness of the operator: $(T_{s,u,u} f)(\xi ) = h^{u + \tfrac{v}{a}} (\xi )\smallint _{\Omega _a } h^s (\xi ')K_{s,u,v} (\xi ,\xi ')f(\xi ')dv(\xi ') on L^p (\Omega _a ,dv_\lambda ),1< p< \infty $ , is obtained, where $\Omega _a = \left\{ {\xi = (z,w) \in \mathbb{C}^{n + m} :z \in \mathbb{C}^n ,w \in \mathbb{C}^m ,|z|^2 + |w|^{2/a}< 1} \right\},h(\xi ) = (1 - |z|^2 )^a - |w|^2 $ andK x,u,v (ξ,ξ′).This generalizes the works in literature from the unit ball or unit disc to the weakly pseudoconvex domain ω a . As an appli cation, it is proved thatf?L H p (ω a ,dv λ) implies $h\tfrac{{|a|}}{a} + |\beta |(\xi )D_2^a D_z^\beta f \in L^p (\Omega _a ,dv_\lambda ),1 \leqslant p< \infty $ , for any multi-indexa=(α1,?,α n and ? = (?1, —?). An interesting question is whether the converse holds.