Based on the data of 1:250000 geological mapping completed by CGS and the previous literature of the Cenozoic strata, 98 remnant basins and 5 stratigraphic realms with 13 stratigraphic subrealms have been recognized o...Based on the data of 1:250000 geological mapping completed by CGS and the previous literature of the Cenozoic strata, 98 remnant basins and 5 stratigraphic realms with 13 stratigraphic subrealms have been recognized on the Qinghai-Tibet Plateau and its adjacent area. Through the research of the types of remnant basins, tectonic setting, stratigraphic sequence and sedimentary characteristics, contact relationship between the strata, the formation time and evolution history of sediments, we divided the uplift process and sedimentary response of the Qinghai-Tibet Plateau into 3 stages and 8 sub-stages, namely, subduction-collision uplift stage (65-34 Ma) with three sub-stages, intercontinental convergence and compressive uplift stage (34-13 Ma) with three sub-stages, and intercontinental isostatic adjustment uplift stage (since 13 Ma) with two sub-stages.展开更多
The hydrocarbon accumulation modes and differences in the Tethyan realm serve as a hot research topic in the petroleum geology community at home and abroad.Both the Persian Gulf Basin in the Middle East and the Sichua...The hydrocarbon accumulation modes and differences in the Tethyan realm serve as a hot research topic in the petroleum geology community at home and abroad.Both the Persian Gulf Basin in the Middle East and the Sichuan Basin in China,situated on the southern and northern sides of the Tethyan realm,respectively,record the whole geological process of the opening and closure of the Prototethys,the Paleotethys,and the Neotethys sequentially,exhibiting anomalous hydrocarbon enrichment.Based on the analysis of the plate tectonic evolution in the Tethyan realm,this study dissects the structures and hydrocarbon accumulation conditions of both basins.Followed by a systematic comparative analysis of the factors controlling hydrocarbon enrichment in the process of plate breakup and convergence in the Tethyan realm,this study proposes petroleum exploration targets in the realm.The results are as follows:(1)Since the Meso-Neoproterozoic,the Persian Gulf Basin and the Sichuan Basin have undergone similar tectonic evolution in the early stage but different in the late stage.Under the influence of the formation and evolution of the Prototethys,Paleotethys,and Neotethys oceans,both basins experienced multi-stage development and modification,forming two major extension-convergence cycles.Consequently,both basins are characterized by the vertical orderly superimposition of various basin prototypes in the order of rift-intracratonic basin(passive continental margin)-foreland.(2)The fact that the Tethyan realm was long located at medium-low latitudes and the local anoxic environment formed in the process of plate breakup and convergence played a vital role in the formation of extensive source rocks.The source rocks are predominantly distributed in underfilled rifts and deep depressions that were connected to the ocean in the unidirectional continental breakup process;basin-slopes and intra-shelf basins on passive continental margins;basinal lows within intracratonic basins,and underfilled foredeeps in foreland basins.The favorable ar展开更多
基金supported by Geological Survey of China (Grant Nos.1212010610103 and 1212010733802)National Natural Science Founda-tion of China (Grant Nos.40921062 and 400830212)MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences
文摘Based on the data of 1:250000 geological mapping completed by CGS and the previous literature of the Cenozoic strata, 98 remnant basins and 5 stratigraphic realms with 13 stratigraphic subrealms have been recognized on the Qinghai-Tibet Plateau and its adjacent area. Through the research of the types of remnant basins, tectonic setting, stratigraphic sequence and sedimentary characteristics, contact relationship between the strata, the formation time and evolution history of sediments, we divided the uplift process and sedimentary response of the Qinghai-Tibet Plateau into 3 stages and 8 sub-stages, namely, subduction-collision uplift stage (65-34 Ma) with three sub-stages, intercontinental convergence and compressive uplift stage (34-13 Ma) with three sub-stages, and intercontinental isostatic adjustment uplift stage (since 13 Ma) with two sub-stages.
基金supported by the National Natural Science Foundation of China (Grant Nos.92255302,U19B6003 and 42002137)。
文摘The hydrocarbon accumulation modes and differences in the Tethyan realm serve as a hot research topic in the petroleum geology community at home and abroad.Both the Persian Gulf Basin in the Middle East and the Sichuan Basin in China,situated on the southern and northern sides of the Tethyan realm,respectively,record the whole geological process of the opening and closure of the Prototethys,the Paleotethys,and the Neotethys sequentially,exhibiting anomalous hydrocarbon enrichment.Based on the analysis of the plate tectonic evolution in the Tethyan realm,this study dissects the structures and hydrocarbon accumulation conditions of both basins.Followed by a systematic comparative analysis of the factors controlling hydrocarbon enrichment in the process of plate breakup and convergence in the Tethyan realm,this study proposes petroleum exploration targets in the realm.The results are as follows:(1)Since the Meso-Neoproterozoic,the Persian Gulf Basin and the Sichuan Basin have undergone similar tectonic evolution in the early stage but different in the late stage.Under the influence of the formation and evolution of the Prototethys,Paleotethys,and Neotethys oceans,both basins experienced multi-stage development and modification,forming two major extension-convergence cycles.Consequently,both basins are characterized by the vertical orderly superimposition of various basin prototypes in the order of rift-intracratonic basin(passive continental margin)-foreland.(2)The fact that the Tethyan realm was long located at medium-low latitudes and the local anoxic environment formed in the process of plate breakup and convergence played a vital role in the formation of extensive source rocks.The source rocks are predominantly distributed in underfilled rifts and deep depressions that were connected to the ocean in the unidirectional continental breakup process;basin-slopes and intra-shelf basins on passive continental margins;basinal lows within intracratonic basins,and underfilled foredeeps in foreland basins.The favorable ar