期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
An explicit formula for the Webster torsion of a pseudo-hermitian manifold and its application to torsion-free hypersurfaces Dedicated to Professor Sheng GONG on the occasion of his 75th birthday 被引量:2
1
作者 LUK Hing-Sun 《Science China Mathematics》 SCIE 2006年第11期1662-1682,共21页
This paper gives an explicit formula for calculating the Webster pseudo torsion for a strictly pseudoconvex pseudo-hermitian hypersurface. As applications, we are able to classify some pseudo torsion-free hypersurface... This paper gives an explicit formula for calculating the Webster pseudo torsion for a strictly pseudoconvex pseudo-hermitian hypersurface. As applications, we are able to classify some pseudo torsion-free hypersurfaces, which include real ellipsoids. 展开更多
关键词 pseudo Herrnitian manifolds torsion formula torsion-free hypersufaces.
原文传递
n-tilting Torsion Classes and n-cotilting Torsion-free Classes 被引量:2
2
作者 HE Dong-lin LI Yu-yan 《Chinese Quarterly Journal of Mathematics》 2019年第2期196-203,共8页
In this paper,we consider some generalizations of tilting torsion classes and cotilting torsion-free classes,give the definition and characterizations of n-tilting torsion classes and n-cotilting torsion-free classes,... In this paper,we consider some generalizations of tilting torsion classes and cotilting torsion-free classes,give the definition and characterizations of n-tilting torsion classes and n-cotilting torsion-free classes,and study n-tilting preenvelopes and n-cotilting precovers. 展开更多
关键词 n-tilting torsion CLASSES n-cotilting torsion-free CLASSES preenvelopes precovers
下载PDF
Torsion in Groups of Integral Triangles
3
作者 Will Murray 《Advances in Pure Mathematics》 2013年第1期116-120,共5页
Let 0<γ<π be a fixed pythagorean angle. We study the abelian group Hr of primitive integral triangles (a,b,c) for which the angle opposite side c is γ. Addition in Hr is defined by adding the angles β opposi... Let 0<γ<π be a fixed pythagorean angle. We study the abelian group Hr of primitive integral triangles (a,b,c) for which the angle opposite side c is γ. Addition in Hr is defined by adding the angles β opposite side b and modding out by π-γ. The only Hr for which the structure is known is Hπ/2, which is free abelian. We prove that for generalγ, Hr has an element of order two iff 2(1- cosγ) is a rational square, and it has elements of order three iff the cubic (2cosγ)x3-3x2+1=0 has a rational solution 0<x<1. This shows that the set of values ofγ for which Hr has two-torsion is dense in [0, π], and similarly for three-torsion. We also show that there is at most one copy of either Z2 or Z3 in Hr. Finally, we give some examples of higher order torsion elements in Hr. 展开更多
关键词 ABELIAN GROUPS Cubic Equations Examples free ABELIAN Geometric Constructions Group Theory INTEGRAL TRIANGLES Law of Cosines Primitive PYTHAGOREAN Angles PYTHAGOREAN TRIANGLES PYTHAGOREAN Triples Rational Squares Three-torsion torsion torsion-free Two-torsion Triangle Geometry
下载PDF
Finitely Generated Torsion-free Nilpotent Groups Admitting an Automorphism of Prime Order 被引量:2
4
作者 Xu Tao Liu He-guo 《Communications in Mathematical Research》 CSCD 2016年第2期167-172,共6页
Let G be a finitely generated torsion-free nilpotent group and a an automorphism of prime order p of G. If the map ψ : G → G defined by g^φ = [g, α] is surjective, then the nilpotent class of G is at most h(p),... Let G be a finitely generated torsion-free nilpotent group and a an automorphism of prime order p of G. If the map ψ : G → G defined by g^φ = [g, α] is surjective, then the nilpotent class of G is at most h(p), where h(p) is a function depending only on p. In particular, if α^3 = 1, then the nilpotent class of G is at most 2. 展开更多
关键词 torsion-free nilpotent group regular automorphism SURJECTIVITY
下载PDF
Differential Homological Algebra and General Relativity 被引量:1
5
作者 Jean-Francois Pommaret 《Journal of Modern Physics》 2019年第12期1454-1486,共33页
In 1916, F.S. Macaulay developed specific localization techniques for dealing with “unmixed polynomial ideals” in commutative algebra, transforming them into what he called “inverse systems” of partial differentia... In 1916, F.S. Macaulay developed specific localization techniques for dealing with “unmixed polynomial ideals” in commutative algebra, transforming them into what he called “inverse systems” of partial differential equations. In 1970, D.C. Spencer and coworkers studied the formal theory of such systems, using methods of homological algebra that were giving rise to “differential homological algebra”, replacing unmixed polynomial ideals by “pure differential modules”. The use of “differential extension modules” and “differential double duality” is essential for such a purpose. In particular, 0-pure differential modules are torsion-free and admit an “absolute parametrization” by means of arbitrary potential like functions. In 2012, we have been able to extend this result to arbitrary pure differential modules, introducing a “relative parametrization” where the potentials should satisfy compatible “differential constraints”. We recently noticed that General Relativity is just a way to parametrize the Cauchy stress equations by means of the formal adjoint of the Ricci operator in order to obtain a “minimum parametrization” by adding sufficiently many compatible differential constraints, exactly like the Lorenz condition in electromagnetism. In order to make this difficult paper rather self-contained, these unusual purely mathematical results are illustrated by many explicit examples, two of them dealing with contact transformations, and even strengthening the comments we recently provided on the mathematical foundations of General Relativity and Gauge Theory. They also bring additional doubts on the origin and existence of gravitational waves. 展开更多
关键词 Homological Algebra Extension MODULE torsion-free MODULE Pure MODULE PURITY Filtration INVOLUTION Electromagnetism General RELATIVITY
下载PDF
Normally Torsion-free Lexsegment Ideals
6
作者 Anda Olteanu 《Algebra Colloquium》 SCIE CSCD 2015年第1期23-34,共12页
In this paper we characterize all the lexsegment ideals which are normally torsion-free. This will provide a large class of normally torsion-free monomial ideals which are not square-free. Our characterization is give... In this paper we characterize all the lexsegment ideals which are normally torsion-free. This will provide a large class of normally torsion-free monomial ideals which are not square-free. Our characterization is given in terms of the ends of the lexsegment. We also prove that, for lexsegment ideals, the property being normally torsion-free is equivalent to the property of the depth function being constant. 展开更多
关键词 normally torsion-free ideal monomial ideals lexsegment ideals associatedprimes
原文传递
The Classification of Torsion-free TI-Groups
7
作者 Ryszard R.Andruszkiewicz Mateusz Woronowiczt 《Algebra Colloquium》 SCIE CSCD 2022年第4期595-606,共12页
An abelian group A is called a TI-group if every associative ring with the additive group A is filial.The filiality of a ring R means that the ring R is associative and all ideals of any ideal of R are ideals in R.In ... An abelian group A is called a TI-group if every associative ring with the additive group A is filial.The filiality of a ring R means that the ring R is associative and all ideals of any ideal of R are ideals in R.In this paper,torsion-free TI-groups are described up to the structure of associative nil groups.It is also proved that,for torsion-free abelian groups that are not associative nil,the condition TI implies the indecomposability and homogeneity.The paper contains constructions of 2^(■o)such groups of any rank from 2to 2^(■o)which are pairwise non-isomorphic. 展开更多
关键词 torsion-free abelian group filial ring associative ring commutative ring additivegroupsof rings
原文传递
Basic subgroup and Reid's theorem
8
作者 NGU Min Hui WONG Kok Bin WONG Peng Choon 《Science China Mathematics》 SCIE 2011年第10期2249-2251,共3页
We give conditions under which a torsion-free abelian group is the sum of two basic subgroups.
关键词 torsion-free abelian free abelian basic subgroup pure subgroup
原文传递
Dedekind整环的性质研究
9
作者 鲁志敏 《佳木斯大学学报(自然科学版)》 CAS 2019年第5期837-838,共2页
为了解决Dedekind整环上的一些性质及Dedekind整环上有限生成无扭模结构问题,利用主理想整环和Dedekind整环的关系以及主理想整环上有限生成模的结构的研究方法,得到Dedekind整环上有限生成无扭模是投射摸以及Dedekind整环上一个商环的... 为了解决Dedekind整环上的一些性质及Dedekind整环上有限生成无扭模结构问题,利用主理想整环和Dedekind整环的关系以及主理想整环上有限生成模的结构的研究方法,得到Dedekind整环上有限生成无扭模是投射摸以及Dedekind整环上一个商环的同构。 展开更多
关键词 Dedekind环 有限生成模 无扭模 商环
下载PDF
主弱平坦系的一个推广
10
作者 乔丽 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第10期98-102,共5页
设S是幺半群,T是S的非空集合.通过T定义了T-主弱平坦系的概念,给出了这类S-系的性质刻画.所得结果推广了主弱平坦系的相关结论.
关键词 挠自由 主弱平坦 T 主弱平坦
下载PDF
Dedekind模
11
作者 李煜彦 何东林 邱晓鹏 《佳木斯大学学报(自然科学版)》 CAS 2011年第6期942-943,共2页
给出了整环上的有限生成挠自由Dedekind R-模M与Dedekind(M)-模M以及环(M)之间的等价关系.进而得到了在Dedekind模下的一些等价刻画.
关键词 Dedekind模 可逆子模 (M)-模 整环 挠自由
下载PDF
Posner定理的推广
12
作者 王学宽 《湘潭师范学院学报(社会科学版)》 1994年第6期12-13,共2页
本文证明了:设N是2-挠自由分配素近环,d1,d2是N的两个导子使得d1d2也是一个导子,则d1=O或者d2=0。
关键词 导子 分配素近环 挠自由
下载PDF
The Betti Numbers of Real Toric Varieties Associated to Weyl Chambers of Type B
13
作者 Suyoung CHOI Boram PARK Hanchul PARK 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2017年第6期1213-1222,共10页
The authors compute the(rational) Betti number of real toric varieties associated to Weyl chambers of type B, and furthermore show that their integral cohomology is p-torsion free for all odd primes p.
关键词 Real toric variety Real toric manifold Betti number torsion-free cohomology Root system Weyl chambers Type B Generalized Euler number Springernumber Shellability
原文传递
一类特殊近环的序和导子
14
作者 王学宽 《湖北大学学报(自然科学版)》 CAS 1994年第3期254-258,共5页
我们引入一类非结合近环-零积结合分配生成近环,研究它的Abian序关系和导子.我们的主要结果是:(1)设X是零积结合分配生成约化近环N的子集,c∈N,则c=SupX当且仅当c是X的一个上界且A(X)=A(c);(2)... 我们引入一类非结合近环-零积结合分配生成近环,研究它的Abian序关系和导子.我们的主要结果是:(1)设X是零积结合分配生成约化近环N的子集,c∈N,则c=SupX当且仅当c是X的一个上界且A(X)=A(c);(2)设X={xi|i∈I},Y={yi|j∈J}是N的两个正交子集,SupX=x,SupY=y,Z={xiji|i∈I,j∈J},则Z是N的一个正交子集且SupZ=xy;(3)一个挠自由零积结合分配生成约化近环不容纳一个非零的幂零导子。 展开更多
关键词 Abian序 导子 结合环 近环
下载PDF
P-内射模的某些研究 被引量:13
15
作者 殷晓斌 吴俊 《安徽师范大学学报(自然科学版)》 CAS 2000年第1期11-13,共3页
主要研究P -内射模及其内射包络的一些性质 ,并讨论了可换整环上P
关键词 P-内射模 可除模 无扭模 内射包络 可换整环
下载PDF
交换环上的平坦模是w-模 被引量:10
16
作者 赵松泉 王芳贵 陈翰林 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期364-366,共3页
设R是有单位元的交换环,R-模M称为w-模,是指对任何满足RHomR(J,R)的有限生成理想J,有HomR(R/J,M)=0与Ext1R(R/J,M)=0.证明了平坦模一定是w-模.
关键词 GV-理想 GV-无挠模 平坦模 w-模
下载PDF
形式三角矩阵环的零因子图 被引量:4
17
作者 徐承杰 易忠 郑英 《数学杂志》 CSCD 北大核心 2013年第5期891-901,共11页
本文研究了形式三角矩阵环的零因子结构与零因子图的问题.利用零因子的性质及交换环零因子图的有关结论及分类讨论的方法,获得了形式三角矩阵环的零因子图直径为2的充要条件,推广了有限交换环的零因子图的相关结果.
关键词 形式三角矩阵环 无扰模 零因子 零因子图 直径
下载PDF
S-系的扭类与扭自由类 被引量:2
18
作者 张人智 吴连发 魏火生 《南昌大学学报(理科版)》 CAS 1996年第4期371-375,共5页
给出了S-系的扭类与扭自由类的刻画。
关键词 扭类 扭自由类 τ-纯子系 S系 半群
下载PDF
强无挠模和环的整体强无挠维数 被引量:1
19
作者 陈勇君 王芳贵 熊涛 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第2期163-167,共5页
设R是任何环,D是右R-模.若对任何平坦维数有限的左R-模M,有Tor1^R(D,M)=0,则D称为强无挠模.强无挠模对Gorenstein环的研究发挥了重要的作用.为了对强无挠模作进一步刻画,首先证明(D∞,F∞)是Tor-挠理论当且仅当1.FFD(R)〈∞,其中,... 设R是任何环,D是右R-模.若对任何平坦维数有限的左R-模M,有Tor1^R(D,M)=0,则D称为强无挠模.强无挠模对Gorenstein环的研究发挥了重要的作用.为了对强无挠模作进一步刻画,首先证明(D∞,F∞)是Tor-挠理论当且仅当1.FFD(R)〈∞,其中,D∞和F∞分别表示强无挠右R-模类和平坦维数有限的左R-模类.还证明每一右R-模是强无挠模当且仅当1.FFD(R)=0.最后证明若1.FFD(R)〈∞,则1.FFD(R)=stf.dim(R),其中stf.dim(R)表示环R的(右)整体强无挠维数. 展开更多
关键词 强无挠模 平坦维数 弱finitistic维数 强无挠维数 整体强无挠维数
下载PDF
有零因子的交换环上w-理想的升链条件 被引量:4
20
作者 张俊 王芳贵 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期146-151,共6页
讨论了一般交换环上w-模的性质,进一步刻画了w-Noether环,证明了w-Noether环上有限型的GV-无挠模只有有限个极大素理想,且每一个都是其中某个非零元素的零化子.推广了Orzech定理,得到了更一般形式的Vasconcelos定理.
关键词 GV-无挠模 w-模 有限型模 w-同态 w-Noether环
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部