摘要
Let G be a finitely generated torsion-free nilpotent group and a an automorphism of prime order p of G. If the map ψ : G → G defined by g^φ = [g, α] is surjective, then the nilpotent class of G is at most h(p), where h(p) is a function depending only on p. In particular, if α^3 = 1, then the nilpotent class of G is at most 2.
Let G be a finitely generated torsion-free nilpotent group and a an automorphism of prime order p of G. If the map ψ : G → G defined by g^φ = [g, α] is surjective, then the nilpotent class of G is at most h(p), where h(p) is a function depending only on p. In particular, if α^3 = 1, then the nilpotent class of G is at most 2.
基金
The NSF(11371124)of China
the NSF(F2015402033)of Hebei Province
the Doctoral Special Foundation(20120066)of Hebei University of Engineering