期刊文献+

Finitely Generated Torsion-free Nilpotent Groups Admitting an Automorphism of Prime Order 被引量:2

Finitely Generated Torsion-free Nilpotent Groups Admitting an Automorphism of Prime Order
下载PDF
导出
摘要 Let G be a finitely generated torsion-free nilpotent group and a an automorphism of prime order p of G. If the map ψ : G → G defined by g^φ = [g, α] is surjective, then the nilpotent class of G is at most h(p), where h(p) is a function depending only on p. In particular, if α^3 = 1, then the nilpotent class of G is at most 2. Let G be a finitely generated torsion-free nilpotent group and a an automorphism of prime order p of G. If the map ψ : G → G defined by g^φ = [g, α] is surjective, then the nilpotent class of G is at most h(p), where h(p) is a function depending only on p. In particular, if α^3 = 1, then the nilpotent class of G is at most 2.
出处 《Communications in Mathematical Research》 CSCD 2016年第2期167-172,共6页 数学研究通讯(英文版)
基金 The NSF(11371124)of China the NSF(F2015402033)of Hebei Province the Doctoral Special Foundation(20120066)of Hebei University of Engineering
关键词 torsion-free nilpotent group regular automorphism SURJECTIVITY torsion-free nilpotent group, regular automorphism, surjectivity
  • 相关文献

参考文献6

  • 1Burnside W. Theory of Groups of Finite Order (Second Edition). New York: Dover Publications Inc., 1955. 被引量:1
  • 2Neumann B H. Group with automorphisms that leave only the neutral element fixed. Arch. Math., 1956, 7: 1-5. 被引量:1
  • 3Thompson J. Finite group with fixed-point-free automorphisms of prime order. Proc. Natl. Acad. Sci. USA, 1959, 45: 578-581. 被引量:1
  • 4Higman G. Groups and rings which have automorphisms without non-trivial fixed elements. J. London Math. Soc. (2), 1957, 32: 321-334. 被引量:1
  • 5Robinson D J S. A Course in the Theory of Groups (Second Edition). New York: Springer- Verlag, 1996. 被引量:1
  • 6Kov~cs L G. Group with regular automorphisms of order four. Math. Z., 1961, T5: 277-294. 被引量:1

同被引文献1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部