This paper aims at exploring the tectonic characteristics of the South China Continent (SCC) and extracting the universal tec- tonic rules from these characteristics,to help enrich the plate tectonic theory and bett...This paper aims at exploring the tectonic characteristics of the South China Continent (SCC) and extracting the universal tec- tonic rules from these characteristics,to help enrich the plate tectonic theory and better understand the continental dynamic system. For this purpose, here we conduct a multi-disciplinary investigation and combine it with the previous studies to reas- sess the tectonics and evolution of SCC and propose that the tectonic framework of the continent comprises two blocks, three types of tectonic units, four deformation systems, and four evolutionary stages with distinctive mechanism and tectonic characteris- tics since the Neoproterozoic. The four evolutionary stages are: (1) The amalgamation and break-up of the Neoproterozoic plates, typically the intracontinental rifting. (2) The early Paleozoic and Mesozoic intracontinental orogeny confined by plate tectonics, forming two composite tectonic domains. (3) The parallel operation of the Yangtze cratonization and intracontinental orogeny, and multi-phase reactivation of the Yangtze craton. (4) The association and differentiation evolution of plate tectonics and intraconti- nental tectonics, and the dynamic characteristics under the Meso-Cenozoic modem global plate tectonic regime.展开更多
In this paper,a deep collocation method(DCM)for thin plate bending problems is proposed.This method takes advantage of computational graphs and backpropagation algorithms involved in deep learning.Besides,the proposed...In this paper,a deep collocation method(DCM)for thin plate bending problems is proposed.This method takes advantage of computational graphs and backpropagation algorithms involved in deep learning.Besides,the proposed DCM is based on a feedforward deep neural network(DNN)and differs from most previous applications of deep learning for mechanical problems.First,batches of randomly distributed collocation points are initially generated inside the domain and along the boundaries.A loss function is built with the aim that the governing partial differential equations(PDEs)of Kirchhoff plate bending problems,and the boundary/initial conditions are minimised at those collocation points.A combination of optimizers is adopted in the backpropagation process to minimize the loss function so as to obtain the optimal hyperparameters.In Kirchhoff plate bending problems,the C^1 continuity requirement poses significant difficulties in traditional mesh-based methods.This can be solved by the proposed DCM,which uses a deep neural network to approximate the continuous transversal deflection,and is proved to be suitable to the bending analysis of Kirchhoff plate of various geometries.展开更多
Waterlogging is one of the major water issues in most cities of China and directly restricts their urbanization processes.The construction of Sponge City is an effective approach to solving the urban water issues,part...Waterlogging is one of the major water issues in most cities of China and directly restricts their urbanization processes.The construction of Sponge City is an effective approach to solving the urban water issues,particularly for the waterlogging.In this study,both the urban issues emerged at the stage of rapid urbanization in China and the demands as well as problems of Sponge City construction related with the water issues were investigated,and the opportunities and challenges for the Sponge City construction in the future were also proposed.It was found that the current stormwater management focused on the construction of gray infrastructures(e.g.,drainage network and water tank) based on the fast discharge idea,which was costly and hard to catch up with the rapid expansion of city and its impervious surface,while green infrastructures(e.g.,river,lake and wetland)were ignored.Moreover,the current construction of Sponge City was still limited to low impacted development(LID) approach which was concentrated on source control measures without consideration of the critical functions of surrounding landscapes(i.e.,mountain,river,wetland,forest,farmland and lake),while application of the integrated urban water system approach and its supported technologies including municipal engineering,urban hydrology,environmental science,social science and ecoscape were relatively weak and needed to be improved.Besides,the lack of special Sponge City plan and demonstration area was also a considerable problem.In this paper,some perspectives on Good Sponge City Construction were proposed such as the point that idea of urban plan and construction should conform to the integral and systematic view of sustainable urban development.Therefore,both the basic theoretical research and the basic infrastructure construction such as monitoring system,drainage facility and demonstration area should be strengthened,meanwhile,the reformation and innovation in the urban water management system and the education system should also be urgently pe展开更多
While a general concensus has recently been reached as to the causal relationship between the subduction of the west Pacific plate and the destruction of the North China Craton, a number of important questions remain ...While a general concensus has recently been reached as to the causal relationship between the subduction of the west Pacific plate and the destruction of the North China Craton, a number of important questions remain to answer, including the initial subduction of west Pacific plate beneath the eastern Asian continent, the position of west Pacific subduction zone during the peak period of decratonization(i.e., Early Cretaceous), the formation age of the big mantle wedge under eastern Asia, and the fate of the subducted Pacific slab. Integration of available data suggests that the subduction of the western Pacific plate was initiated as early as Early Jurrasic and the subduction zone was situated to 2,200 km west of the present-day trench in the Early Creataceous, as a result of eastward migration of the Asian continent over a distance of ca. 900 km since the Early Cretaceous.The retreat of the subducting west Pacific plate started ~145 Ma ago, corresponding to the initial formation of the big mantle wedge system in the Early Cretaceous. The subduction of the Pacific slab excerted severe influence on the North China Craton most likely through material and energy echange between the big mantle wedge and overlying cratonic lithosphere. The evolution history of the west Pacific plate was reconstructed based on tectonic events. This allows to propose that the causes of phases A and B for the Yanshanian orogeny were respectively related to rapid low-angle subduction and to lowering subduction angle of the west Pacific plate. At ca. 130–120 Ma, the subduction of the west Pacific plate was characterized by increasing subducting angle, slab rollback and rapid trench retreat, leading to the final stagnation of the subducting slab within the mantle transition zone. This process may have significantly affected the physical property and viscosity of the mantle wedge above the stagnant slab, resulting in non-steady mantle flows. The ingression of slab-released melts/fluids would significantly lower the viscosity of the mantle展开更多
When plate tectonics started to occur on Earth and how it has evolved through time are two of the most fundamental questions in earth sciences. While gravity-driven subducting has been accepted as a critical condition...When plate tectonics started to occur on Earth and how it has evolved through time are two of the most fundamental questions in earth sciences. While gravity-driven subducting has been accepted as a critical condition for the operation of plate tectonics on Earth, it is intriguing how the dynamic regime and thermal state of subduction zones have affected the style of plate tectonics in Earth’s history. The metamorphic rocks of regional distribution along convergent plate boundaries record reworking of crustal rocks through dehydration and melting at lithospheric depths. The property of regional metamorphism is determined by both dynamic regime and thermal state of plate margins. The two variables have secularly evolved in Earth’s history, which is recorded by changes in the global distribution of metamorphic facies series through time. This results in two styles of plate tectonics. Modern-style plate tectonics has developed since the Neoproterozoic when plate margins were rigid enough for cold subducting, whereas ancient-style plate tectonics has developed since the Archean when plate margins were ductile enough for warm subducting. Such a difference is primarily dictated by higher mantle temperatures in the Archean than in the Phanerozoic. The development of plate subduction in both cold and warm realms is primarily dictated by the rheology of plate margins. This leads to a holistic model for the style of plate tectonics during different periods in Earth’s history.展开更多
The NE-to NNE-striking Tan-Lu Fault Zone(TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-...The NE-to NNE-striking Tan-Lu Fault Zone(TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-Pacific Plate,and can be used for indication to the subduction history. The TLFZ reactivated at the end of Middle Jurassic since its origination in Middle Triassic. This phase of sinistral motion can only be recognized along the eastern edge of the Dabie-Sulu orogenis,and indicates initiation of the Paleo-Pacific(Izanagi) Plate subduction beneath the East China continent. After the Late Jurassic standstill, the fault zone experienced intense sinistral faulting again at the beginning of Early Cretaceous under N-S compression that resulted from the NNW-ward, low-angle, high-speed subduction of the Izanagi Plate. It turned into normal faulting in the rest of Early Cretaceous, which was simultaneous with the peak destruction of the North China Craton caused by backarc extension that resulted from rollback of the subducting Izanagi Plate. The TLFZ was subjected to sinistral, transpressive displacement again at the end of Early Cretaceous. This shortening event led to termination of the North China Craton destruction. The fault zone suffered local normal faulting in Late Cretaceous due to the far-field, weak backarc extension. The late Mesozoic evolution of the TLFZ show repeated alternation between the transpressive strike-slip motion and normal faulting. Each of the sinistral faulting event took place in a relatively short period whereas every normal faulting event lasted in a longer period, which are related to the subduction way and history of the Paleo-Pacific Plates.展开更多
目的:比较切开复位锁定加压钢板与闭合复位顺行髓内钉治疗肱骨干骨折的临床疗效。方法2010年5月至2012年7月于北京积水潭医院创伤骨科接受手术治疗的肱骨干骨折患者122例,按照手术方式分为钢板组和髓内钉组,其中钢板组患者63例,髓...目的:比较切开复位锁定加压钢板与闭合复位顺行髓内钉治疗肱骨干骨折的临床疗效。方法2010年5月至2012年7月于北京积水潭医院创伤骨科接受手术治疗的肱骨干骨折患者122例,按照手术方式分为钢板组和髓内钉组,其中钢板组患者63例,髓内钉组患者59例。比较两组患者住院和手术相关指标。术后采用门诊或电话方式对患者进行定期进行随访,按照肩关节评分标准(Neer、Myao)评估患者肩、肘关节功能,采用欧洲五维健康量表(EQ-5D)评价患者生活质量。结果所有患者均顺利完成手术。两组患者住院时间、恢复工作时间和返岗率差异均无统计学意义(均P >0.05),髓内钉组患者手术时间、出血量、并发症发生率低于钢板组。钢板组和髓内钉组患者均完成3年以上随访,平均随访时间分别为(41.2±4.2)个月和(42.1±4.7)个月,末次随访时两组患者肩关节评分分别为(93.8±6.1)分和(92.1±4.2)分,肘关节评分为(94.9±2.9)分和(96.2±1.5)分,EQ-5D 评分为(0.92±0.06)分和(0.93±0.06)分,两组各项评分差异均无统计学意义(均 P >0.05)。术后所有患者均达到骨性愈合,无延迟愈合或不愈合、内固定断裂、松动、畸形愈合等情况发生。结论钢板螺钉内固定和顺行髓内钉内固定均是治疗肱骨干骨折安全、有效的手术方法。两种手术各有利弊,医生需根据患者具体情况选择合适的手术方式。展开更多
In this paper, a new discrimination diagram using absolute measures of Th and Nb is applied to postArchean ophiolites to best discriminate a large number of different ophiolitic basalts. This diagram was obtained usi...In this paper, a new discrimination diagram using absolute measures of Th and Nb is applied to postArchean ophiolites to best discriminate a large number of different ophiolitic basalts. This diagram was obtained using 〉2000 known ophiolitic basalts and was tested using -560 modern rocks from known tectonic settings. Ten different basaltic varieties from worldwide ophiolitic complexes have been examined. They include two basaltic types that have never been considered before, which are: (1) medium-Ti basalts (MTB) generated at nascent forearc settings; (2) a type of mid-ocean ridge basalts showing garnet signature (G-MORB) that characterizes Alpine-type (i,e., non volcanic) rifted margins and ocean-continent transition zones (OCTZ). In the Th-Nb diagram, basalts generated in oceanic subductionunrelated settings, rifted margins, and OCTZ can be distinguished from subduction-related basalts with a misclassification rate 〈 1%. This diagram highlights the chemical variation of oceanic, rifted margin, and OCTZ basalts from depleted compositions to progressively more enriched compositions reflecting, in turn, the variance of source composition and degree of melting within the MORB-OIB array. It also highlights the chemical contributions of enriched (OIB-type) components to mantle sources. Enrichment of Th relative to Nb is particularly effective for highlighting crustal input via subduction or crustal contamination. Basalts formed at continental margin arcs and island arc with a complex polygenetic crust can be distinguished from those generated in intra-oceanic arcs in supra-subducrion zones (SSZ) with a misclassification rate 〈1%. Within the SSZ group, two sub-settings can be recognized with a misclassification rate 〈0.5%. They are: (1) SSZ influenced by chemical contribution from subduction- derived components (forearc and intra-arc sub-settings) characterized by island arc tholeiitic (IAT) and boninitic basalts; (2) SSZ with no contribution from subduction-展开更多
Setting up the hypostratotype of late Precambrian is the main aim of the research on the Meso- and Neoproterozoic in North China. The chronostratigraphic position is the key in this study. However, many key horizons h...Setting up the hypostratotype of late Precambrian is the main aim of the research on the Meso- and Neoproterozoic in North China. The chronostratigraphic position is the key in this study. However, many key horizons have not been calibrated with the high-quafity isotopic ages. Using the reported new U-Pb age with the Sensitive High-Resolution Ion Microprobe (SHRIMP Ⅱ), a zircon U- Pb age was obtained of the ash bed in the Xiamaling Formation in North China Plate, yielding a weighted mean ^206pb/^238U age of 1368±12 Ma. It is the first SHRIMP U-Pb age from the Xiamaling Formation in the North China Plate, and represents the depositing time of the middle part of the Xiamaling Formation. The zircon age plays an important role to understanding geological evolution of the North China Plate during Meso- and Neoproterozoic.展开更多
Objective To study the relationship between cartilage end plate calcification and intervertebral disc degeneration Methods An experimental model of cervical disc degeneration in rabbits was established by resecti...Objective To study the relationship between cartilage end plate calcification and intervertebral disc degeneration Methods An experimental model of cervical disc degeneration in rabbits was established by resection of the cervical supraspinous and interspinous ligaments and detachment of the posterior paravertebral muscles from the cervical vertebrae Mechanical instability in the cervical spine elicited by this surgical intervention accelerated the process of intervertebral disc degeneration The extent of intervertebral disc degeneration was graded in morphologically, and the thicknesses of the calcified layer and the uncalcified layer of the cartilage end plate were measured in each degenerated cervical disc Results In less severely degenerative cervical discs, the morphology of the cartilage end plate showed nearly normal construction, and the tidemark was clear In severely degenerative discs, the matrix and cells showed fibrosis, the tidemark advanced, and the calcified cartilage thickened There exists a positive correlation between the thickness of the calcified layer of the cartilage end plate and the degree of cervical disc degeneration Conclusion The calcification of the cartilage end plate is the key factor that initiates and promotes cervical disc degeneration展开更多
基金supported by the special grant of Ministry of Science and Technology of the People’s Republic of China for State Key Laboratory of Continental Dynamics,Northwest University,the key research project of Sinopec Group(Grant No.YPH08012)the National Natural Science Foundation of China(Grant Nos.41190072,41190073,41190074,41190070)
文摘This paper aims at exploring the tectonic characteristics of the South China Continent (SCC) and extracting the universal tec- tonic rules from these characteristics,to help enrich the plate tectonic theory and better understand the continental dynamic system. For this purpose, here we conduct a multi-disciplinary investigation and combine it with the previous studies to reas- sess the tectonics and evolution of SCC and propose that the tectonic framework of the continent comprises two blocks, three types of tectonic units, four deformation systems, and four evolutionary stages with distinctive mechanism and tectonic characteris- tics since the Neoproterozoic. The four evolutionary stages are: (1) The amalgamation and break-up of the Neoproterozoic plates, typically the intracontinental rifting. (2) The early Paleozoic and Mesozoic intracontinental orogeny confined by plate tectonics, forming two composite tectonic domains. (3) The parallel operation of the Yangtze cratonization and intracontinental orogeny, and multi-phase reactivation of the Yangtze craton. (4) The association and differentiation evolution of plate tectonics and intraconti- nental tectonics, and the dynamic characteristics under the Meso-Cenozoic modem global plate tectonic regime.
文摘In this paper,a deep collocation method(DCM)for thin plate bending problems is proposed.This method takes advantage of computational graphs and backpropagation algorithms involved in deep learning.Besides,the proposed DCM is based on a feedforward deep neural network(DNN)and differs from most previous applications of deep learning for mechanical problems.First,batches of randomly distributed collocation points are initially generated inside the domain and along the boundaries.A loss function is built with the aim that the governing partial differential equations(PDEs)of Kirchhoff plate bending problems,and the boundary/initial conditions are minimised at those collocation points.A combination of optimizers is adopted in the backpropagation process to minimize the loss function so as to obtain the optimal hyperparameters.In Kirchhoff plate bending problems,the C^1 continuity requirement poses significant difficulties in traditional mesh-based methods.This can be solved by the proposed DCM,which uses a deep neural network to approximate the continuous transversal deflection,and is proved to be suitable to the bending analysis of Kirchhoff plate of various geometries.
基金supported by the National Natural Science Foundation of China(Grant No.41571028)Key Programs of the Chinese Academy of Sciences(Grant No.KFZD-SW-301)
文摘Waterlogging is one of the major water issues in most cities of China and directly restricts their urbanization processes.The construction of Sponge City is an effective approach to solving the urban water issues,particularly for the waterlogging.In this study,both the urban issues emerged at the stage of rapid urbanization in China and the demands as well as problems of Sponge City construction related with the water issues were investigated,and the opportunities and challenges for the Sponge City construction in the future were also proposed.It was found that the current stormwater management focused on the construction of gray infrastructures(e.g.,drainage network and water tank) based on the fast discharge idea,which was costly and hard to catch up with the rapid expansion of city and its impervious surface,while green infrastructures(e.g.,river,lake and wetland)were ignored.Moreover,the current construction of Sponge City was still limited to low impacted development(LID) approach which was concentrated on source control measures without consideration of the critical functions of surrounding landscapes(i.e.,mountain,river,wetland,forest,farmland and lake),while application of the integrated urban water system approach and its supported technologies including municipal engineering,urban hydrology,environmental science,social science and ecoscape were relatively weak and needed to be improved.Besides,the lack of special Sponge City plan and demonstration area was also a considerable problem.In this paper,some perspectives on Good Sponge City Construction were proposed such as the point that idea of urban plan and construction should conform to the integral and systematic view of sustainable urban development.Therefore,both the basic theoretical research and the basic infrastructure construction such as monitoring system,drainage facility and demonstration area should be strengthened,meanwhile,the reformation and innovation in the urban water management system and the education system should also be urgently pe
基金supported by the National Natural Science Foundation of China (Grant No. 1688103)the Chinese Academy of Sciences Strategic Priority Program B (Grant No. XDB18000000)the State Oceanography Bureau (Grant No. GASIGEOGE-02)
文摘While a general concensus has recently been reached as to the causal relationship between the subduction of the west Pacific plate and the destruction of the North China Craton, a number of important questions remain to answer, including the initial subduction of west Pacific plate beneath the eastern Asian continent, the position of west Pacific subduction zone during the peak period of decratonization(i.e., Early Cretaceous), the formation age of the big mantle wedge under eastern Asia, and the fate of the subducted Pacific slab. Integration of available data suggests that the subduction of the western Pacific plate was initiated as early as Early Jurrasic and the subduction zone was situated to 2,200 km west of the present-day trench in the Early Creataceous, as a result of eastward migration of the Asian continent over a distance of ca. 900 km since the Early Cretaceous.The retreat of the subducting west Pacific plate started ~145 Ma ago, corresponding to the initial formation of the big mantle wedge system in the Early Cretaceous. The subduction of the Pacific slab excerted severe influence on the North China Craton most likely through material and energy echange between the big mantle wedge and overlying cratonic lithosphere. The evolution history of the west Pacific plate was reconstructed based on tectonic events. This allows to propose that the causes of phases A and B for the Yanshanian orogeny were respectively related to rapid low-angle subduction and to lowering subduction angle of the west Pacific plate. At ca. 130–120 Ma, the subduction of the west Pacific plate was characterized by increasing subducting angle, slab rollback and rapid trench retreat, leading to the final stagnation of the subducting slab within the mantle transition zone. This process may have significantly affected the physical property and viscosity of the mantle wedge above the stagnant slab, resulting in non-steady mantle flows. The ingression of slab-released melts/fluids would significantly lower the viscosity of the mantle
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB18020303)the National Natural Science Foundation of China (41590620 and 41890831).
文摘When plate tectonics started to occur on Earth and how it has evolved through time are two of the most fundamental questions in earth sciences. While gravity-driven subducting has been accepted as a critical condition for the operation of plate tectonics on Earth, it is intriguing how the dynamic regime and thermal state of subduction zones have affected the style of plate tectonics in Earth’s history. The metamorphic rocks of regional distribution along convergent plate boundaries record reworking of crustal rocks through dehydration and melting at lithospheric depths. The property of regional metamorphism is determined by both dynamic regime and thermal state of plate margins. The two variables have secularly evolved in Earth’s history, which is recorded by changes in the global distribution of metamorphic facies series through time. This results in two styles of plate tectonics. Modern-style plate tectonics has developed since the Neoproterozoic when plate margins were rigid enough for cold subducting, whereas ancient-style plate tectonics has developed since the Archean when plate margins were ductile enough for warm subducting. Such a difference is primarily dictated by higher mantle temperatures in the Archean than in the Phanerozoic. The development of plate subduction in both cold and warm realms is primarily dictated by the rheology of plate margins. This leads to a holistic model for the style of plate tectonics during different periods in Earth’s history.
基金supported by the National Natural Science Foundation of China(Grant Nos.41472186&91414301)the National Key Basic Research Program of China(Grant No.2016YFC0600102)
文摘The NE-to NNE-striking Tan-Lu Fault Zone(TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-Pacific Plate,and can be used for indication to the subduction history. The TLFZ reactivated at the end of Middle Jurassic since its origination in Middle Triassic. This phase of sinistral motion can only be recognized along the eastern edge of the Dabie-Sulu orogenis,and indicates initiation of the Paleo-Pacific(Izanagi) Plate subduction beneath the East China continent. After the Late Jurassic standstill, the fault zone experienced intense sinistral faulting again at the beginning of Early Cretaceous under N-S compression that resulted from the NNW-ward, low-angle, high-speed subduction of the Izanagi Plate. It turned into normal faulting in the rest of Early Cretaceous, which was simultaneous with the peak destruction of the North China Craton caused by backarc extension that resulted from rollback of the subducting Izanagi Plate. The TLFZ was subjected to sinistral, transpressive displacement again at the end of Early Cretaceous. This shortening event led to termination of the North China Craton destruction. The fault zone suffered local normal faulting in Late Cretaceous due to the far-field, weak backarc extension. The late Mesozoic evolution of the TLFZ show repeated alternation between the transpressive strike-slip motion and normal faulting. Each of the sinistral faulting event took place in a relatively short period whereas every normal faulting event lasted in a longer period, which are related to the subduction way and history of the Paleo-Pacific Plates.
文摘目的:比较切开复位锁定加压钢板与闭合复位顺行髓内钉治疗肱骨干骨折的临床疗效。方法2010年5月至2012年7月于北京积水潭医院创伤骨科接受手术治疗的肱骨干骨折患者122例,按照手术方式分为钢板组和髓内钉组,其中钢板组患者63例,髓内钉组患者59例。比较两组患者住院和手术相关指标。术后采用门诊或电话方式对患者进行定期进行随访,按照肩关节评分标准(Neer、Myao)评估患者肩、肘关节功能,采用欧洲五维健康量表(EQ-5D)评价患者生活质量。结果所有患者均顺利完成手术。两组患者住院时间、恢复工作时间和返岗率差异均无统计学意义(均P >0.05),髓内钉组患者手术时间、出血量、并发症发生率低于钢板组。钢板组和髓内钉组患者均完成3年以上随访,平均随访时间分别为(41.2±4.2)个月和(42.1±4.7)个月,末次随访时两组患者肩关节评分分别为(93.8±6.1)分和(92.1±4.2)分,肘关节评分为(94.9±2.9)分和(96.2±1.5)分,EQ-5D 评分为(0.92±0.06)分和(0.93±0.06)分,两组各项评分差异均无统计学意义(均 P >0.05)。术后所有患者均达到骨性愈合,无延迟愈合或不愈合、内固定断裂、松动、畸形愈合等情况发生。结论钢板螺钉内固定和顺行髓内钉内固定均是治疗肱骨干骨折安全、有效的手术方法。两种手术各有利弊,医生需根据患者具体情况选择合适的手术方式。
文摘In this paper, a new discrimination diagram using absolute measures of Th and Nb is applied to postArchean ophiolites to best discriminate a large number of different ophiolitic basalts. This diagram was obtained using 〉2000 known ophiolitic basalts and was tested using -560 modern rocks from known tectonic settings. Ten different basaltic varieties from worldwide ophiolitic complexes have been examined. They include two basaltic types that have never been considered before, which are: (1) medium-Ti basalts (MTB) generated at nascent forearc settings; (2) a type of mid-ocean ridge basalts showing garnet signature (G-MORB) that characterizes Alpine-type (i,e., non volcanic) rifted margins and ocean-continent transition zones (OCTZ). In the Th-Nb diagram, basalts generated in oceanic subductionunrelated settings, rifted margins, and OCTZ can be distinguished from subduction-related basalts with a misclassification rate 〈 1%. This diagram highlights the chemical variation of oceanic, rifted margin, and OCTZ basalts from depleted compositions to progressively more enriched compositions reflecting, in turn, the variance of source composition and degree of melting within the MORB-OIB array. It also highlights the chemical contributions of enriched (OIB-type) components to mantle sources. Enrichment of Th relative to Nb is particularly effective for highlighting crustal input via subduction or crustal contamination. Basalts formed at continental margin arcs and island arc with a complex polygenetic crust can be distinguished from those generated in intra-oceanic arcs in supra-subducrion zones (SSZ) with a misclassification rate 〈1%. Within the SSZ group, two sub-settings can be recognized with a misclassification rate 〈0.5%. They are: (1) SSZ influenced by chemical contribution from subduction- derived components (forearc and intra-arc sub-settings) characterized by island arc tholeiitic (IAT) and boninitic basalts; (2) SSZ with no contribution from subduction-
基金supported by the National Natural Science Foundation of China(Grant No.40621002 and Grant No.2006FY120300-1)the Program for Changjiang Scholars and Innovative Research Team in university(Grant No.IRT0546).
文摘Setting up the hypostratotype of late Precambrian is the main aim of the research on the Meso- and Neoproterozoic in North China. The chronostratigraphic position is the key in this study. However, many key horizons have not been calibrated with the high-quafity isotopic ages. Using the reported new U-Pb age with the Sensitive High-Resolution Ion Microprobe (SHRIMP Ⅱ), a zircon U- Pb age was obtained of the ash bed in the Xiamaling Formation in North China Plate, yielding a weighted mean ^206pb/^238U age of 1368±12 Ma. It is the first SHRIMP U-Pb age from the Xiamaling Formation in the North China Plate, and represents the depositing time of the middle part of the Xiamaling Formation. The zircon age plays an important role to understanding geological evolution of the North China Plate during Meso- and Neoproterozoic.
文摘Objective To study the relationship between cartilage end plate calcification and intervertebral disc degeneration Methods An experimental model of cervical disc degeneration in rabbits was established by resection of the cervical supraspinous and interspinous ligaments and detachment of the posterior paravertebral muscles from the cervical vertebrae Mechanical instability in the cervical spine elicited by this surgical intervention accelerated the process of intervertebral disc degeneration The extent of intervertebral disc degeneration was graded in morphologically, and the thicknesses of the calcified layer and the uncalcified layer of the cartilage end plate were measured in each degenerated cervical disc Results In less severely degenerative cervical discs, the morphology of the cartilage end plate showed nearly normal construction, and the tidemark was clear In severely degenerative discs, the matrix and cells showed fibrosis, the tidemark advanced, and the calcified cartilage thickened There exists a positive correlation between the thickness of the calcified layer of the cartilage end plate and the degree of cervical disc degeneration Conclusion The calcification of the cartilage end plate is the key factor that initiates and promotes cervical disc degeneration