Chemical synapses are asymmetric intercellular junc. tions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temp...Chemical synapses are asymmetric intercellular junc. tions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion chan- nels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.展开更多
Gila outnumber neurons and are the most abundant cell type in the nervous system. Whereas neurons are the major carriers, transducers, and processors of information, glial cells, once considered mainly to play a passi...Gila outnumber neurons and are the most abundant cell type in the nervous system. Whereas neurons are the major carriers, transducers, and processors of information, glial cells, once considered mainly to play a passive supporting role, are now recognized for their active contributions to almost every aspect of nervous system development. Recently, insights from the invertebrate organism Drosophila melanogaster have advanced our knowledge of glial cell biology. In particular, findings on neuron-glia interactions via intrinsic and extrinsic mechanisms have shed light on the importance of gtia during different stages of neuronal development. Here, we summarize recent advances in understanding the functions of Drosophila glia, which resemble their mammalian counterparts in morphology and function, neural stem-cell conversion, synapse formation, and developmental axon pruning. These discoveries reinforce the idea that glia are substantial players in the developing nervous system and further advance the understanding of mechanisms leading to neurodegeneration.展开更多
Until recently, the synaptic transmission and excitatory amino acid transporters activation of neurons are very well discussed in the previous studies and are considered to be the two distinct features of Synapse. It ...Until recently, the synaptic transmission and excitatory amino acid transporters activation of neurons are very well discussed in the previous studies and are considered to be the two distinct features of Synapse. It is also found that a large number of interactions take place in the domain of ionic exchanges and protein interactions in synapses. It is evolutionary to have destined to release of Neurotransmitters to conduct an impulse to the other consecutive neurons, which forms the most important characteristic of synapse. From the popular perspective, it has been identified that detailed theoretical closer correlation of data produced through various studies about synapse can unravel many mysteries related to functions of synapse. Hence, this research paper tries to concentrate on a selected group of prominent characteristics and properties of synapse and also highlights some noteworthy discoveries, emphasizing the influential capabilities of them in the thought process and improving the knowledge of the field. It also highlights the expressive properties and forms of synapse brought out through the evidences available in sparse to dense data in a correlational way.展开更多
Neuroligins(NLs) are postsynaptic cell-adhesion proteins that play important roles in synapse formation and the excitatory-inhibitory balance. They have been associated with autism in both human genetic and animal mod...Neuroligins(NLs) are postsynaptic cell-adhesion proteins that play important roles in synapse formation and the excitatory-inhibitory balance. They have been associated with autism in both human genetic and animal model studies, and affect synaptic connections and synaptic plasticity in several brain regions. Yet current research mainly focuses on pyramidal neurons, while the function of NLs in interneurons remains to be understood. To explore the functional difference among NLs in the subtypespecific synapse formation of both pyramidal neurons and interneurons, we performed viral-mediated shRNA knockdown of NLs in cultured rat cortical neurons and examined the synapses in the two major types of neurons. Our results showed that in both types of neurons, NL1 and NL3 were involved in excitatory synapse formation, and NL2 in GABAergic synapse formation. Interestingly, NL1 affectedGABAergic synapse formation more specifically than NL3,and NL2 affected excitatory synapse density preferentially in pyramidal neurons. In summary, our results demonstrated that different NLs play distinct roles in regulating the development and balance of excitatory and inhibitory synapses in pyramidal neurons and interneurons.展开更多
文摘Chemical synapses are asymmetric intercellular junc. tions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion chan- nels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.
基金supported by grants from the National Basic Research Program of China (973 Program 2010CB944900 and 2013CB945602)the National Natural Science Foundation of China (31270825 and 31171043)Fundamental Research Funds for the Central Universities We thank members of the Ho lab for discussion and comments
文摘Gila outnumber neurons and are the most abundant cell type in the nervous system. Whereas neurons are the major carriers, transducers, and processors of information, glial cells, once considered mainly to play a passive supporting role, are now recognized for their active contributions to almost every aspect of nervous system development. Recently, insights from the invertebrate organism Drosophila melanogaster have advanced our knowledge of glial cell biology. In particular, findings on neuron-glia interactions via intrinsic and extrinsic mechanisms have shed light on the importance of gtia during different stages of neuronal development. Here, we summarize recent advances in understanding the functions of Drosophila glia, which resemble their mammalian counterparts in morphology and function, neural stem-cell conversion, synapse formation, and developmental axon pruning. These discoveries reinforce the idea that glia are substantial players in the developing nervous system and further advance the understanding of mechanisms leading to neurodegeneration.
文摘Until recently, the synaptic transmission and excitatory amino acid transporters activation of neurons are very well discussed in the previous studies and are considered to be the two distinct features of Synapse. It is also found that a large number of interactions take place in the domain of ionic exchanges and protein interactions in synapses. It is evolutionary to have destined to release of Neurotransmitters to conduct an impulse to the other consecutive neurons, which forms the most important characteristic of synapse. From the popular perspective, it has been identified that detailed theoretical closer correlation of data produced through various studies about synapse can unravel many mysteries related to functions of synapse. Hence, this research paper tries to concentrate on a selected group of prominent characteristics and properties of synapse and also highlights some noteworthy discoveries, emphasizing the influential capabilities of them in the thought process and improving the knowledge of the field. It also highlights the expressive properties and forms of synapse brought out through the evidences available in sparse to dense data in a correlational way.
基金supported by grants from the National Natural Science Foundation of China(31571049 and81561168022)the National Basic Research Program of China(2015CB910801)+2 种基金Zhejiang Provincial Natural Science Foundation of China(LR19H090001 and LD19H090002)a joint grant from the National Natural Science Foundation of China and the Research Grants Council of Hong Kong,China(8151101104 and N_HKUST625/15)Fundamental Research Funds for the CentralUniversities of China
文摘Neuroligins(NLs) are postsynaptic cell-adhesion proteins that play important roles in synapse formation and the excitatory-inhibitory balance. They have been associated with autism in both human genetic and animal model studies, and affect synaptic connections and synaptic plasticity in several brain regions. Yet current research mainly focuses on pyramidal neurons, while the function of NLs in interneurons remains to be understood. To explore the functional difference among NLs in the subtypespecific synapse formation of both pyramidal neurons and interneurons, we performed viral-mediated shRNA knockdown of NLs in cultured rat cortical neurons and examined the synapses in the two major types of neurons. Our results showed that in both types of neurons, NL1 and NL3 were involved in excitatory synapse formation, and NL2 in GABAergic synapse formation. Interestingly, NL1 affectedGABAergic synapse formation more specifically than NL3,and NL2 affected excitatory synapse density preferentially in pyramidal neurons. In summary, our results demonstrated that different NLs play distinct roles in regulating the development and balance of excitatory and inhibitory synapses in pyramidal neurons and interneurons.