The interaction of nanoparticles with proteins is extremely complex, important for understanding the biological properties of nanomaterials, but is very poorly understood. We have employed a combinatorial library of s...The interaction of nanoparticles with proteins is extremely complex, important for understanding the biological properties of nanomaterials, but is very poorly understood. We have employed a combinatorial library of surface modified gold nanoparticles to interrogate the relationships between the nanoparticle surface chemistry and the specific and nonspecific binding to a common, important, and representative enzyme, acetylcholinesterase (ACHE). We also used Bayesian neural networks to generate robust quantitative structure-property relationship (QSPR) models relating the nanoparticle surface to the AChE binding that also provided significant understanding into the molecular basis for these interactions. The results illustrate the insights that result from a synergistic blending of experimental combinatorial synthesis and biological testing of nanoparticles with quantitative computational methods and molecular modeling.展开更多
The objective is to investigate the effect of atmospheric pressure dielectric barrier discharge(APDBD) plasma and subsequent cellulase enzyme treatment on the properties of flax fabrics.The changes of surface morpho...The objective is to investigate the effect of atmospheric pressure dielectric barrier discharge(APDBD) plasma and subsequent cellulase enzyme treatment on the properties of flax fabrics.The changes of surface morphology and structure,physico-mechanical properties,hydrophilicity,bending properties,whiteness,and dyeing properties of the treated substrate were investigated.The results indicated that atmospheric pressure dielectric barrier discharge plasma pre-treatment and subsequent cellulase enzyme treatment could diminish the hairiness of flax fabrics,endowing the flax fabrics with good bending properties,water uptake and fiber accessibility while keeping their good mechanical properties compared with those treated with cellulase enzyme alone.展开更多
以丙烯酸为功能单体,甘油1,3-二甘油醇酸二丙烯酸酯作为交联剂,在孔内通过自由基引发聚合,成功地制备了在孔壁表面聚合物修饰的三维有序大孔氧化硅/聚合物复合材料(3DOM Si O_2-COOH)。通过拉曼光谱、扫描电子显微镜(SEM)、BET比表面测...以丙烯酸为功能单体,甘油1,3-二甘油醇酸二丙烯酸酯作为交联剂,在孔内通过自由基引发聚合,成功地制备了在孔壁表面聚合物修饰的三维有序大孔氧化硅/聚合物复合材料(3DOM Si O_2-COOH)。通过拉曼光谱、扫描电子显微镜(SEM)、BET比表面测试和片剂硬度计技术手段表征了材料孔结构特征和机械强度。结果表明,3DOM Si O_2-COOH具有均匀的相互连接的大孔结构,孔壁表面形成了一层致密的11~32 nm厚度的聚合物膜,且具有较高的机械强度高。以3DOM Si O_2-COOH材料为载体,葡萄糖淀粉酶在其内固载能均匀地分布在材料内部。固载酶和游离酶的最佳反应p H均为5,最佳反应温度为55℃,米氏常数分别为3.78和3.97 g/L。固载酶具有更高的热稳定性、p H值稳定性、储藏稳定性和重复使用稳定性。3DOM Si O_2-COOH材料可作为一种新型的固载酶载体。展开更多
文摘The interaction of nanoparticles with proteins is extremely complex, important for understanding the biological properties of nanomaterials, but is very poorly understood. We have employed a combinatorial library of surface modified gold nanoparticles to interrogate the relationships between the nanoparticle surface chemistry and the specific and nonspecific binding to a common, important, and representative enzyme, acetylcholinesterase (ACHE). We also used Bayesian neural networks to generate robust quantitative structure-property relationship (QSPR) models relating the nanoparticle surface to the AChE binding that also provided significant understanding into the molecular basis for these interactions. The results illustrate the insights that result from a synergistic blending of experimental combinatorial synthesis and biological testing of nanoparticles with quantitative computational methods and molecular modeling.
基金supported by the Science and Technology Project of the Education Department of Zhejiang Province,China(No.Y201432680)the Professional Leaders Leading Project of the Education Department of Zhejiang Province,China(No.1j2013131)the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Education Department of Zhejiang Province,China(No.1097802072012001)
文摘The objective is to investigate the effect of atmospheric pressure dielectric barrier discharge(APDBD) plasma and subsequent cellulase enzyme treatment on the properties of flax fabrics.The changes of surface morphology and structure,physico-mechanical properties,hydrophilicity,bending properties,whiteness,and dyeing properties of the treated substrate were investigated.The results indicated that atmospheric pressure dielectric barrier discharge plasma pre-treatment and subsequent cellulase enzyme treatment could diminish the hairiness of flax fabrics,endowing the flax fabrics with good bending properties,water uptake and fiber accessibility while keeping their good mechanical properties compared with those treated with cellulase enzyme alone.
文摘以丙烯酸为功能单体,甘油1,3-二甘油醇酸二丙烯酸酯作为交联剂,在孔内通过自由基引发聚合,成功地制备了在孔壁表面聚合物修饰的三维有序大孔氧化硅/聚合物复合材料(3DOM Si O_2-COOH)。通过拉曼光谱、扫描电子显微镜(SEM)、BET比表面测试和片剂硬度计技术手段表征了材料孔结构特征和机械强度。结果表明,3DOM Si O_2-COOH具有均匀的相互连接的大孔结构,孔壁表面形成了一层致密的11~32 nm厚度的聚合物膜,且具有较高的机械强度高。以3DOM Si O_2-COOH材料为载体,葡萄糖淀粉酶在其内固载能均匀地分布在材料内部。固载酶和游离酶的最佳反应p H均为5,最佳反应温度为55℃,米氏常数分别为3.78和3.97 g/L。固载酶具有更高的热稳定性、p H值稳定性、储藏稳定性和重复使用稳定性。3DOM Si O_2-COOH材料可作为一种新型的固载酶载体。