We report a new quantum dot superluminescent diode with a new device structure. In this device, a multi- mode-interferometer configuration and a J-bend structure were monolithically integrated. Owing to the multi-mode...We report a new quantum dot superluminescent diode with a new device structure. In this device, a multi- mode-interferometer configuration and a J-bend structure were monolithically integrated. Owing to the multi-mode- interferometer structure, the superluminescent diode exhibits 60% increase in output power and 43% reduction in the differential resistance compared with the uniform waveguide width superluminescent diode fabricated from the same wafer. Our device produces an emission spectrum as wide as 103.7 nm with an output power of 2.5 mW at 600 mA continue-wave injection current. This broadband emission spectrum makes the axial resolution of the optical coherence tomography system employing the superluminescent diode to 6 μm in theory, which is high enough for most tissue imaging.展开更多
With a chirped InAs/GaAs SML-QD (quantum dot) structure serving as the active region, the superluminescent diodes emitting at wavelength of around 970nm are fabricated. By using an active multimode interferometer co...With a chirped InAs/GaAs SML-QD (quantum dot) structure serving as the active region, the superluminescent diodes emitting at wavelength of around 970nm are fabricated. By using an active multimode interferometer configuration, these devices exhibit high continue-wave output powers from the narrow ridge waveguides. At continue-wave injection current of 800mA, an output power of 18.5mW, and the single Gaussian-like emission spectrum centered at 972nm with a full width at half maximum of 18nm are obtained.展开更多
This paper reports the fabrication of J-shaped bent-waveguide superluminescent diodes utilizing an InAl- GaAs/AlGaAs quantum dot active region. The emission spectrum of the device is centred at 884 nm with a full widt...This paper reports the fabrication of J-shaped bent-waveguide superluminescent diodes utilizing an InAl- GaAs/AlGaAs quantum dot active region. The emission spectrum of the device is centred at 884 nm with a full width at half maximum of 37 nm and an output power of 18 mW. By incorporating an Al composition into the quan- tum dot active region, short-wavelength superluminescent diode devices can be obtained. An intersection was found for the light power-injection current curves measured from the straight-waveguide facet and the bent-waveguide facet, respectively. The result is attributed to the conjunct effects of the gain and the additional loss of the bent waveguide. A numerical simulation is performed to verify the qualitative explanation. It is shown that bent waveguide loss is an important factor that affects the output power of J-shaped superluminescent diode devices.展开更多
Quantum cascade(QC)superluminescent light emitters(SLEs)have emerged as desirable broadband mid-infrared(MIR)light sources for growing number of applications in areas like medical imaging,gas sensing and national defe...Quantum cascade(QC)superluminescent light emitters(SLEs)have emerged as desirable broadband mid-infrared(MIR)light sources for growing number of applications in areas like medical imaging,gas sensing and national defense.However,it is challenging to obtain a practical high-power device due to the very low efficiency of spontaneous emission in the intersubband transitions in QC structures.Herein a design of^5μm SLEs is demonstrated with a two-phonon resonancebased QC active structure coupled with a compact combinatorial waveguide structure which comprises a short straight part adjacent to a tilted stripe and to a J-shaped waveguide.The as-fabricated SLEs achieve a high output power of 1.8 mW,exhibiting the potential to be integrated into array devices without taking up too much chip space.These results may facilitate the realization of SLE arrays to attain larger output power and pave the pathway towards the practical applications of broadband MIR light sources.展开更多
对由8个量子阱所组成的条形超辐射发光二极管(Superlum inescent d iode,SLD)进行了热分析,计算了不同器件结构下的热阻和温度分布。计算结果表明,热阻变化受芯片宽度和长度的影响较大,可以达到两个数量级;当注入功率达到1 W时,有源区...对由8个量子阱所组成的条形超辐射发光二极管(Superlum inescent d iode,SLD)进行了热分析,计算了不同器件结构下的热阻和温度分布。计算结果表明,热阻变化受芯片宽度和长度的影响较大,可以达到两个数量级;当注入功率达到1 W时,有源区的温度将接近50 K。该分析对有效地设计芯片的结构,减少温度升高对SLD稳定性的影响具有指导意义。展开更多
制备了一种新型的具有高调制带宽的1 053 nm超辐射发光二极管(SLD).利用光荧光(PL)测试分析了不同温度、不同生长速率对SLD芯片外延材料质量的影响,优化了In Ga As/Ga As量子阱的生长温度与生长速率.分析了SLD模块的光电特性随温度与注...制备了一种新型的具有高调制带宽的1 053 nm超辐射发光二极管(SLD).利用光荧光(PL)测试分析了不同温度、不同生长速率对SLD芯片外延材料质量的影响,优化了In Ga As/Ga As量子阱的生长温度与生长速率.分析了SLD模块的光电特性随温度与注入电流的变化关系.研究结果表明,SLD输出波长随温度的漂移系数为0.35 nm/℃,其输出波长随注入电流的漂移对温度并不敏感.在25℃、100 m A注入电流下SLD的-3 d B调制带宽达到1.7 GHz,尾纤输出功率2.5 m W,相应的光谱半宽为24 nm,光谱波纹为0.15 d B.展开更多
基金supported by the National Natural Science Foundation of China(No.61274072)the National High Technology Research and Development Program of China(No.2013AA014201)
文摘We report a new quantum dot superluminescent diode with a new device structure. In this device, a multi- mode-interferometer configuration and a J-bend structure were monolithically integrated. Owing to the multi-mode- interferometer structure, the superluminescent diode exhibits 60% increase in output power and 43% reduction in the differential resistance compared with the uniform waveguide width superluminescent diode fabricated from the same wafer. Our device produces an emission spectrum as wide as 103.7 nm with an output power of 2.5 mW at 600 mA continue-wave injection current. This broadband emission spectrum makes the axial resolution of the optical coherence tomography system employing the superluminescent diode to 6 μm in theory, which is high enough for most tissue imaging.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB604904)the National Natural Science Foundation of China (Grant Nos. 60976057, 61274072, and 60876086)
文摘With a chirped InAs/GaAs SML-QD (quantum dot) structure serving as the active region, the superluminescent diodes emitting at wavelength of around 970nm are fabricated. By using an active multimode interferometer configuration, these devices exhibit high continue-wave output powers from the narrow ridge waveguides. At continue-wave injection current of 800mA, an output power of 18.5mW, and the single Gaussian-like emission spectrum centered at 972nm with a full width at half maximum of 18nm are obtained.
基金supported by the National Basic Research Program of China (Grant No. 2006CB604904)the National Natural Science Foundation of China (Grant Nos. 60876086, 60976057, and 60776037)
文摘This paper reports the fabrication of J-shaped bent-waveguide superluminescent diodes utilizing an InAl- GaAs/AlGaAs quantum dot active region. The emission spectrum of the device is centred at 884 nm with a full width at half maximum of 37 nm and an output power of 18 mW. By incorporating an Al composition into the quan- tum dot active region, short-wavelength superluminescent diode devices can be obtained. An intersection was found for the light power-injection current curves measured from the straight-waveguide facet and the bent-waveguide facet, respectively. The result is attributed to the conjunct effects of the gain and the additional loss of the bent waveguide. A numerical simulation is performed to verify the qualitative explanation. It is shown that bent waveguide loss is an important factor that affects the output power of J-shaped superluminescent diode devices.
基金supported by the Key Research and Development Plan of Ministry of Science and Technology(No.2016YFB0402303)the National Natural Science Foundation of China(No.61575222)+1 种基金the open project of the State Key Laboratory of Luminescence and ApplicationsChina Postdoctoral Science Foundation(No.2017M621858)
文摘Quantum cascade(QC)superluminescent light emitters(SLEs)have emerged as desirable broadband mid-infrared(MIR)light sources for growing number of applications in areas like medical imaging,gas sensing and national defense.However,it is challenging to obtain a practical high-power device due to the very low efficiency of spontaneous emission in the intersubband transitions in QC structures.Herein a design of^5μm SLEs is demonstrated with a two-phonon resonancebased QC active structure coupled with a compact combinatorial waveguide structure which comprises a short straight part adjacent to a tilted stripe and to a J-shaped waveguide.The as-fabricated SLEs achieve a high output power of 1.8 mW,exhibiting the potential to be integrated into array devices without taking up too much chip space.These results may facilitate the realization of SLE arrays to attain larger output power and pave the pathway towards the practical applications of broadband MIR light sources.
文摘制备了一种新型的具有高调制带宽的1 053 nm超辐射发光二极管(SLD).利用光荧光(PL)测试分析了不同温度、不同生长速率对SLD芯片外延材料质量的影响,优化了In Ga As/Ga As量子阱的生长温度与生长速率.分析了SLD模块的光电特性随温度与注入电流的变化关系.研究结果表明,SLD输出波长随温度的漂移系数为0.35 nm/℃,其输出波长随注入电流的漂移对温度并不敏感.在25℃、100 m A注入电流下SLD的-3 d B调制带宽达到1.7 GHz,尾纤输出功率2.5 m W,相应的光谱半宽为24 nm,光谱波纹为0.15 d B.