The high content of alkali chlorides in municipal solid waste incineration(MSWI) fly ash limit its resource reuse due to the potential environmental risks.In this paper, with superheated steam as the gasifying agent a...The high content of alkali chlorides in municipal solid waste incineration(MSWI) fly ash limit its resource reuse due to the potential environmental risks.In this paper, with superheated steam as the gasifying agent and inducer, chlorides in fly ash were removed by thermal treatment within a moderate temperature range.Thermal treatment experiments were performed under different conditions: temperature(500–800℃), steam addition(mass ratio of steam to fly ash = 0.25–1) and residence time(0.5–3 hr).Iron and aluminum powders were added to fly ash to improve the chlorine removal efficiency.Water-soluble chlorides included Na Cl and KCl, and insoluble chlorides mainly included Ca(OH)Cl.The heating process with the addition of water steam was more efficient than that without steam in terms of the removal performance of water-soluble chlorides.The removal efficiency of soluble chlorides reached 75.25% for a mass ratio of 1:1 after 1-hr thermal treatment at 700℃.When the residence time was increased above 1 hr, the total dechlorination efficiency was not increased dramatically.Moreover, adding iron and aluminum powder into the fly ash improved the removal of water-insoluble chlorides, and the total dechlorination efficiency was increased by 11.41%–16.64%.展开更多
The dynamic viscosity of Al-Yb and Al-Ni-Yb superheated melts was measured using a torsional oscillation viscometer. The results show that the temperature dependence of viscosity fits the Arrhenius law well and the fi...The dynamic viscosity of Al-Yb and Al-Ni-Yb superheated melts was measured using a torsional oscillation viscometer. The results show that the temperature dependence of viscosity fits the Arrhenius law well and the fitting factors are calculated. The amorphous ribbons of these alloys were produced by the melt spinning technique and the thermal properties were characterized by using a differential scanning calorimetry (DSC). E (the activation energy for viscous flow), which reflects the change rate of viscosity, has a good negative relation with the GFA in both Al-Yb and Al-Ni-Yb systems. However, there is no direct relation between liquidus viscosity (ηL) and GFA. The superheated fragility M can predict GFA in Al-Yb or Al-Ni-Yb alloy system.展开更多
This paper presents a new aquathermolysis study of conventional heavy oil in superheated steam. A new high temperature autoclave was designed, where volume and pressure could be adjusted. Aquathermolysis was studied o...This paper presents a new aquathermolysis study of conventional heavy oil in superheated steam. A new high temperature autoclave was designed, where volume and pressure could be adjusted. Aquathermolysis was studied on two different conventional heavy oil samples under different reaction times and temperatures. Experimental results show that aquathermolysis does take place for conventional heavy oil. As reaction time increases, the oil viscosity reduces. However, the reaction will reach equilibrium after a certain period of time and won't be sensitive to any further reaction time any more. Analysis shows that, while resin and asphaltenes decrease, saturated hydrocarbons and the H/C ratio increase after reaction. The main mechanism of aquathermolysis includes hydrogenization, desulfuration reaction of resin and asphaltenes, etc.展开更多
Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modem power pla...Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modem power plant. A nonlinear generalized predictive controller based on neuro-fuzzy network (NFGPC) is proposed in this paper. The proposed nonlinear controller is applied to control the superheated steam temperature of a 200MW power plant. From the experiments on the plant and the simulation of the plant, much better performance than the traditional controller is obtained,展开更多
The kinetic viscosities of superheated liquids on the Gd-based bulk glass-forming alloys are measured by an oscillating viscometer in a high vacuum atmosphere. According to the viscosity data,the parameters of superhe...The kinetic viscosities of superheated liquids on the Gd-based bulk glass-forming alloys are measured by an oscillating viscometer in a high vacuum atmosphere. According to the viscosity data,the parameters of superheated liquid fragility,M,are calculated. Based on the values of M in Gd-and Pr-based (cited from the lit-erature) glass-forming alloys,we find that there is a linear correlation between M and the absolute value of mixing enthalpy,|ΔHmix|,in an alloy system with the same base element,and the larger M,the smaller |ΔHmix|. The alloy with larger M exhibits the larger height of energy barriers separating the minima on the potential energy landscape.展开更多
The dissolution, crystallization and hydrolysis behaviors of polyamide 6 (PA 6) in superheated water (140℃ _〈 TH 〈 200 ℃) are investigated. The hydrothermal processing of PA 6 can be divided into four regions...The dissolution, crystallization and hydrolysis behaviors of polyamide 6 (PA 6) in superheated water (140℃ _〈 TH 〈 200 ℃) are investigated. The hydrothermal processing of PA 6 can be divided into four regions: (I) TH 〈 140 ℃, (II) 140 ℃ 〈 TH 〈 155 ℃, (III) 155 ℃ 〈 TH 〈 160℃ and (IV) TH 〉 160 ℃. Below 140 ℃, the hydrothermal processing does not have obvious impact on PA 6. Between 140 ℃ and 155 ℃, an annealing effect is observed that the hydrothermally treated resin shows increased melting temperature and lamellar thickness compared with the original PA 6. Between 155 ℃ and 160 ℃, the hydrothermal processing induces both annealing and surface swelling. Above 160 ℃, PA 6 dissolves fully in the superheated water. As PA 6 dissolves in the superheated water, hydrolysis takes place and becomes more prominent at higher temperatures and longer processing time. The hydrolysis induced molecular weight decrease fits an exponential decay.展开更多
Drying paddy with low-pressure superheated steam(LPSS)can effectively increase theγ-aminobutyric acid content in paddy.This study aimed to investigate the characteristics and mathematical models(MMs)of thin-layer dry...Drying paddy with low-pressure superheated steam(LPSS)can effectively increase theγ-aminobutyric acid content in paddy.This study aimed to investigate the characteristics and mathematical models(MMs)of thin-layer drying of paddy with LPSS.The experimentally obtained data werefitted by nonlinear regression with 5 MMs commonly used for thin-layer drying to calculate the goodness of fit of the MMs.Then,the thin-layer drying of paddy with LPSS was modeled with two machine learning methods as a Bayesian regularization back propagation(BRBP)neural network and a support vector machine(SVM).The results showed that paddy drying with LPSS is a reduced-rate drying process.The drying temperature and operating pressure have a significant impact on the drying process.Under the same pressure,increasing the drying temperature can accelerate the drying rate.Under the same temperature,increasing the operating pressure can accelerate the drying rate.The comparison of the model evaluation indexes showed that 5 common empirical MMs(Hederson and Pabis,Page,Midilli,Logarithmic,and Lewis)for thin-layer drying can achieve excellent fitting effects for a single experimental condition.However,the regression fitting of the indexes by calculating the coefficient(s)of each model showed that the empirical MMs produce poor fitting effects.The BRBP neural network-based model was slightly better than the SVM-based model,and both were significantly better than the empirical MM(the Henderson and Pabis model),as evidenced by a comparison of the training root mean square error(RMSE),testing RMSE,training mean absolute error(MAE),testing MAE,training R2,and testing R2 of the Henderson and Pabis model,the BRBP neural network model,and the SVM-based model.This results indicate that the MMs established by the two machine learning methods can better predict the moisture content changes in the paddy samples dried by LPSS.展开更多
The water-cooled ceramic breeder blanket(WCCB) is one of the blanket candidates for China fusion engineering test reactor(CFETR).In order to improve power generation efficiency and tritium breeding ratio,WCCB with...The water-cooled ceramic breeder blanket(WCCB) is one of the blanket candidates for China fusion engineering test reactor(CFETR).In order to improve power generation efficiency and tritium breeding ratio,WCCB with superheated steam is under development.The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions.In this paper,the coolant flow scheme was designed and one self-developed analytical program was developed,based on a theoretical heat transfer model and empirical correlations.Employing this program,the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions.The results indicated that the superheated steam water-cooled blanket is feasible.展开更多
The anodizing parameters of voltage, current density, temperature, and electrolyte choice were assessed to find an appropriate combination for the superheated slurry cast 7075 Al alloy substrate.The alloy was anodized...The anodizing parameters of voltage, current density, temperature, and electrolyte choice were assessed to find an appropriate combination for the superheated slurry cast 7075 Al alloy substrate.The alloy was anodized in sulfuric acid electrolyte or alternatively in sulfuric acid mixed with boric acid or citric acid. The voltages applied were in the range of 15-30 V. Anodizing current densities tested were 2 and 3 A/dm^2,while temperatures tested were 5 and 15 ℃. Thickness, surface morphology, hardness,and corrosion resistance of the oxide film were then evaluated.It was found that 25 V,2 A/dm^2 and 5 ℃ were suitable for this alloy when anodized in sulfuric acid. The oxide film was smooth with uniform thickness, low porosity, high hardness,and had the highest corrosion resistance at these parameters. However, discontinuous oxide films were observed from samples anodized at higher temperature of 15 ℃.Alternative electrolytes considered were sulfuric acid mixed with boric acid or citric acid. The results showed that electrolytes with boric acid or citric acid increased thickness, hardness, corrosion resistance and quality of the oxide films.However, these oxide films were inferior to those obtained with sulfuric acid electrolyte at lower temperature(25 V, 2 A/dm^2 and5 ℃).展开更多
This paper presents comparison and analysis of thermal-dynamic characteristics of air-drying and superheated steam drying under vacuum. The result reveals that for both convective heat transfer coefficient and resista...This paper presents comparison and analysis of thermal-dynamic characteristics of air-drying and superheated steam drying under vacuum. The result reveals that for both convective heat transfer coefficient and resistance of mass transfer on the surface, superheated steam drying under vacuum is superior to air-drying under the same condition. With Masson pine as specimen, we found that the inversion temperature really exists through comparable experiments of air-drying and superheated steam drying under vacuum. When temperature is above inversion point of temperature, drying speed is faster than that of air-drying; however, if temperature is below the point, the result is opposite. The inversion temperature of experiment ranges from 80 to 85 ℃.展开更多
This paper considers the combination of hydrothermal degradation (HTD) and superheated steam (SHS) drying in disposal and processing of degradable organic wastes in municipal solid wastes (MSW). In SHS drying, a...This paper considers the combination of hydrothermal degradation (HTD) and superheated steam (SHS) drying in disposal and processing of degradable organic wastes in municipal solid wastes (MSW). In SHS drying, a fraction of dryer thermal energy input can be recovered and used to satisfy the heat requirement in maintaining the HTD operating temperature. Both energy and exergy analysis are applied to the combined process. The analysis covers ranges of dryer inlet temperatures of 202.38-234.19~C and feed water content of 32.5-65%. Thermal energy analysis shows that the combination of HTD and SHS drying can achieve thermal energy self-sufficiency (TES) by manipulating process variables. The exergy analysis indicates the location, type, and magnitude of the exergy losses during the whole process by applying the second law of thermodynamics.展开更多
In kiln drying of softwood timber, external heat and moisture mass transfercoefficients are important in defining boundary temperature and moisture content at the woodsurface. In addition, superheated steam drying of ...In kiln drying of softwood timber, external heat and moisture mass transfercoefficients are important in defining boundary temperature and moisture content at the woodsurface. In addition, superheated steam drying of wood is a promising technology but this has notbeen widely accepted commercially, partially due to the lack of understanding of the dryingphenomena occurred during drying. In this work, experimental investigation was performed to quantifythe heat transfer between wood surface and surrounding moist air or superheated steam. In theexperiment, saturated radiata pine sapwood samples were dried using dry-bulb/wet-bulb temperaturesof 60℃/50℃, 90℃/60℃, 120℃/70℃, 140℃/90℃, 160℃/90℃, 140℃/100℃ and 160℃/100℃. The lasttwo schedules were for superheated steam drying as the wet-bulb temperature was set at 100℃. Thecirculation velocity over the board surface was controlled at 4.2m·s^(-1). Two additional runs(90℃/60℃) using air velocities of 2.4 m·s^(-1) and 4.8 m·s^(-1) were performed to check theeffect of the circulation velocity. During drying, sample weight and temperatures at wood surfaceand different depths were continuously measured. Prom these measurements, changes in woodtemperature and moisture content were calculated and external heat-transfer coefficient wasdetermined for both the moist air and the superheated steam drying.展开更多
Background:Conventional drying using heated air oven is commonly used as a method for preserving the product but often affects the nutritional value,taste,and texture.However,the heat from the drying method can oxidiz...Background:Conventional drying using heated air oven is commonly used as a method for preserving the product but often affects the nutritional value,taste,and texture.However,the heat from the drying method can oxidize and destroy heat-sensitive compounds.Superheated steam(SHS)drying uses superheated steam instead of hot air or combustion gases in a direct dryer and was reported better at preserving the nutritional values of food products.Aim:To evaluate the effect of SHS drying on antioxidant properties of tea leaves.The study also compared SHS drying with conventional and freeze-drying methods.Results:Tea leaves dried using freeze drying retained the highest level of antioxidant properties compared to other drying methods.The leaves dried using SHS exhibited significantly higher radical scavenging activity,ORAC and FRAP values compared to oven drying method.At different drying temperatures(150℃and 175℃),oven dried leaves showed significantly higher(p<0.05)antioxidant properties than that of SHS dried ones.Tea leaves dried for 60,75,and 90 min using SHS showed significantly higher(p<0.05)FRAP and ORAC values,and also total phenolic content compared to oven dried tea leaves.Conclusion:Tea leaves dried using SHS drying method retained higher level of antioxidant properties compared to oven drying.The drying method also retained lower antioxidant properties as drying time increased.Further study involving SHS drying in food-related fields should be conducted to support its usefulness.展开更多
Liquid vaporization under thermodynamic phase non-equilibrium condition at the gas-liquid interface is investigated over a wide range of fluid state typical of many liquid-fueled energy conversion systems. The validit...Liquid vaporization under thermodynamic phase non-equilibrium condition at the gas-liquid interface is investigated over a wide range of fluid state typical of many liquid-fueled energy conversion systems. The validity of the phase-equilibrium assumption commonly used in the existing study of liquid vaporization is examined using molecular dynamics theories. The interfacial mass flow rates on both sides of the liquid surface are compared to the net vaporization rate through an order-of-magnitude analysis.Results indicated that the phase-equilibrium assumption holds valid at relatively high pressures and low temperatures,and for droplets with relatively large initial diameters(for example,larger than 10 μm for vaporizing oxygen droplets in gaseous hydrogen in the pressure range from 10 atm to the oxygen critical state). Droplet vaporization under superheated conditions is also explored using classical binary homogeneous nucleation theory,in conjunction with a real-fluid equation of state. It is found that the bubble nucleation rate is very sensitive to changes in saturation ratio and pressure;it increases by several orders of magnitude when either the saturation ratio or the pressure is slightly increased. The kinetic limit of saturation ratio decreases with increasing pressure,leading to reduced difference between saturation and superheat conditions. As a result,the influence of nonequilibrium conditions on droplet vaporization is lower at a higher pressure.展开更多
基金supported by Major Science and Technology Program of China for Water Pollution Control and Treatment(No.2017ZX07202).
文摘The high content of alkali chlorides in municipal solid waste incineration(MSWI) fly ash limit its resource reuse due to the potential environmental risks.In this paper, with superheated steam as the gasifying agent and inducer, chlorides in fly ash were removed by thermal treatment within a moderate temperature range.Thermal treatment experiments were performed under different conditions: temperature(500–800℃), steam addition(mass ratio of steam to fly ash = 0.25–1) and residence time(0.5–3 hr).Iron and aluminum powders were added to fly ash to improve the chlorine removal efficiency.Water-soluble chlorides included Na Cl and KCl, and insoluble chlorides mainly included Ca(OH)Cl.The heating process with the addition of water steam was more efficient than that without steam in terms of the removal performance of water-soluble chlorides.The removal efficiency of soluble chlorides reached 75.25% for a mass ratio of 1:1 after 1-hr thermal treatment at 700℃.When the residence time was increased above 1 hr, the total dechlorination efficiency was not increased dramatically.Moreover, adding iron and aluminum powder into the fly ash improved the removal of water-insoluble chlorides, and the total dechlorination efficiency was increased by 11.41%–16.64%.
基金supported by the National Basic Research Program of China (Grant No. 2007CB613901)the National Natural Science Foundation of China (Grant Nos. 50831003 and 50871062)the Natural Science Foundation of Shandong Province (Grant No. Z2008F08)
文摘The dynamic viscosity of Al-Yb and Al-Ni-Yb superheated melts was measured using a torsional oscillation viscometer. The results show that the temperature dependence of viscosity fits the Arrhenius law well and the fitting factors are calculated. The amorphous ribbons of these alloys were produced by the melt spinning technique and the thermal properties were characterized by using a differential scanning calorimetry (DSC). E (the activation energy for viscous flow), which reflects the change rate of viscosity, has a good negative relation with the GFA in both Al-Yb and Al-Ni-Yb systems. However, there is no direct relation between liquidus viscosity (ηL) and GFA. The superheated fragility M can predict GFA in Al-Yb or Al-Ni-Yb alloy system.
基金support from the National Natural Science Foundation of China(Grant No.50276040)is gratefully acknowledged.
文摘This paper presents a new aquathermolysis study of conventional heavy oil in superheated steam. A new high temperature autoclave was designed, where volume and pressure could be adjusted. Aquathermolysis was studied on two different conventional heavy oil samples under different reaction times and temperatures. Experimental results show that aquathermolysis does take place for conventional heavy oil. As reaction time increases, the oil viscosity reduces. However, the reaction will reach equilibrium after a certain period of time and won't be sensitive to any further reaction time any more. Analysis shows that, while resin and asphaltenes decrease, saturated hydrocarbons and the H/C ratio increase after reaction. The main mechanism of aquathermolysis includes hydrogenization, desulfuration reaction of resin and asphaltenes, etc.
基金This work was supported by the Natural Science Foundation of Beijing (No. 4062030)National Natural Science Foundation of China (No. 50576022,69804003)Scientific Research Common Program of Beijing Municipal Commission of Education (KM200611232007).
文摘Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modem power plant. A nonlinear generalized predictive controller based on neuro-fuzzy network (NFGPC) is proposed in this paper. The proposed nonlinear controller is applied to control the superheated steam temperature of a 200MW power plant. From the experiments on the plant and the simulation of the plant, much better performance than the traditional controller is obtained,
基金the National Basic Research Program of China (973 Program) (Grant No. 2007CB613901)the National Natural Science Foundation of China (Grant No. 50231040)+1 种基金the Natural Science Foundation of Shandong Province of China (Grant No. Z2004F02)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20050422024)
文摘The kinetic viscosities of superheated liquids on the Gd-based bulk glass-forming alloys are measured by an oscillating viscometer in a high vacuum atmosphere. According to the viscosity data,the parameters of superheated liquid fragility,M,are calculated. Based on the values of M in Gd-and Pr-based (cited from the lit-erature) glass-forming alloys,we find that there is a linear correlation between M and the absolute value of mixing enthalpy,|ΔHmix|,in an alloy system with the same base element,and the larger M,the smaller |ΔHmix|. The alloy with larger M exhibits the larger height of energy barriers separating the minima on the potential energy landscape.
基金financially supported by the National Natural Science Foundation of China(No.51373032)Innovation Program of Shanghai Municipal Education Commission,Fundamental Research Funds for the Central University and DHU Distinguished Young Professor Programsupport from Chinese Universities Scientific Fund(No.CUSFDH-D-2014025)
文摘The dissolution, crystallization and hydrolysis behaviors of polyamide 6 (PA 6) in superheated water (140℃ _〈 TH 〈 200 ℃) are investigated. The hydrothermal processing of PA 6 can be divided into four regions: (I) TH 〈 140 ℃, (II) 140 ℃ 〈 TH 〈 155 ℃, (III) 155 ℃ 〈 TH 〈 160℃ and (IV) TH 〉 160 ℃. Below 140 ℃, the hydrothermal processing does not have obvious impact on PA 6. Between 140 ℃ and 155 ℃, an annealing effect is observed that the hydrothermally treated resin shows increased melting temperature and lamellar thickness compared with the original PA 6. Between 155 ℃ and 160 ℃, the hydrothermal processing induces both annealing and surface swelling. Above 160 ℃, PA 6 dissolves fully in the superheated water. As PA 6 dissolves in the superheated water, hydrolysis takes place and becomes more prominent at higher temperatures and longer processing time. The hydrolysis induced molecular weight decrease fits an exponential decay.
文摘Drying paddy with low-pressure superheated steam(LPSS)can effectively increase theγ-aminobutyric acid content in paddy.This study aimed to investigate the characteristics and mathematical models(MMs)of thin-layer drying of paddy with LPSS.The experimentally obtained data werefitted by nonlinear regression with 5 MMs commonly used for thin-layer drying to calculate the goodness of fit of the MMs.Then,the thin-layer drying of paddy with LPSS was modeled with two machine learning methods as a Bayesian regularization back propagation(BRBP)neural network and a support vector machine(SVM).The results showed that paddy drying with LPSS is a reduced-rate drying process.The drying temperature and operating pressure have a significant impact on the drying process.Under the same pressure,increasing the drying temperature can accelerate the drying rate.Under the same temperature,increasing the operating pressure can accelerate the drying rate.The comparison of the model evaluation indexes showed that 5 common empirical MMs(Hederson and Pabis,Page,Midilli,Logarithmic,and Lewis)for thin-layer drying can achieve excellent fitting effects for a single experimental condition.However,the regression fitting of the indexes by calculating the coefficient(s)of each model showed that the empirical MMs produce poor fitting effects.The BRBP neural network-based model was slightly better than the SVM-based model,and both were significantly better than the empirical MM(the Henderson and Pabis model),as evidenced by a comparison of the training root mean square error(RMSE),testing RMSE,training mean absolute error(MAE),testing MAE,training R2,and testing R2 of the Henderson and Pabis model,the BRBP neural network model,and the SVM-based model.This results indicate that the MMs established by the two machine learning methods can better predict the moisture content changes in the paddy samples dried by LPSS.
基金supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China(Nos.2013GB108004,2014GB122000 and 2014GB119000)National Natural Science Foundation of China(No.11175207)
文摘The water-cooled ceramic breeder blanket(WCCB) is one of the blanket candidates for China fusion engineering test reactor(CFETR).In order to improve power generation efficiency and tritium breeding ratio,WCCB with superheated steam is under development.The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions.In this paper,the coolant flow scheme was designed and one self-developed analytical program was developed,based on a theoretical heat transfer model and empirical correlations.Employing this program,the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions.The results indicated that the superheated steam water-cooled blanket is feasible.
基金financially supported by the Higher Education Research Promotionthe National Research University Project of Thailand, Office of the Higher Education (Contract No. ENG580529S)+2 种基金Center of Excellence in Materials Engineering (CEME)the Graduate Engineer Scholarship and the Graduate School ScholarshipPrince of Songkla University, including Surat Thani Campus (2016)
文摘The anodizing parameters of voltage, current density, temperature, and electrolyte choice were assessed to find an appropriate combination for the superheated slurry cast 7075 Al alloy substrate.The alloy was anodized in sulfuric acid electrolyte or alternatively in sulfuric acid mixed with boric acid or citric acid. The voltages applied were in the range of 15-30 V. Anodizing current densities tested were 2 and 3 A/dm^2,while temperatures tested were 5 and 15 ℃. Thickness, surface morphology, hardness,and corrosion resistance of the oxide film were then evaluated.It was found that 25 V,2 A/dm^2 and 5 ℃ were suitable for this alloy when anodized in sulfuric acid. The oxide film was smooth with uniform thickness, low porosity, high hardness,and had the highest corrosion resistance at these parameters. However, discontinuous oxide films were observed from samples anodized at higher temperature of 15 ℃.Alternative electrolytes considered were sulfuric acid mixed with boric acid or citric acid. The results showed that electrolytes with boric acid or citric acid increased thickness, hardness, corrosion resistance and quality of the oxide films.However, these oxide films were inferior to those obtained with sulfuric acid electrolyte at lower temperature(25 V, 2 A/dm^2 and5 ℃).
基金Supported by the National Natural Science Foundation of China (Grant No. 59876005) and the Fund Cultivating the Young Talents of Beijing ForestryUniversity (200304016)
文摘This paper presents comparison and analysis of thermal-dynamic characteristics of air-drying and superheated steam drying under vacuum. The result reveals that for both convective heat transfer coefficient and resistance of mass transfer on the surface, superheated steam drying under vacuum is superior to air-drying under the same condition. With Masson pine as specimen, we found that the inversion temperature really exists through comparable experiments of air-drying and superheated steam drying under vacuum. When temperature is above inversion point of temperature, drying speed is faster than that of air-drying; however, if temperature is below the point, the result is opposite. The inversion temperature of experiment ranges from 80 to 85 ℃.
文摘This paper considers the combination of hydrothermal degradation (HTD) and superheated steam (SHS) drying in disposal and processing of degradable organic wastes in municipal solid wastes (MSW). In SHS drying, a fraction of dryer thermal energy input can be recovered and used to satisfy the heat requirement in maintaining the HTD operating temperature. Both energy and exergy analysis are applied to the combined process. The analysis covers ranges of dryer inlet temperatures of 202.38-234.19~C and feed water content of 32.5-65%. Thermal energy analysis shows that the combination of HTD and SHS drying can achieve thermal energy self-sufficiency (TES) by manipulating process variables. The exergy analysis indicates the location, type, and magnitude of the exergy losses during the whole process by applying the second law of thermodynamics.
文摘In kiln drying of softwood timber, external heat and moisture mass transfercoefficients are important in defining boundary temperature and moisture content at the woodsurface. In addition, superheated steam drying of wood is a promising technology but this has notbeen widely accepted commercially, partially due to the lack of understanding of the dryingphenomena occurred during drying. In this work, experimental investigation was performed to quantifythe heat transfer between wood surface and surrounding moist air or superheated steam. In theexperiment, saturated radiata pine sapwood samples were dried using dry-bulb/wet-bulb temperaturesof 60℃/50℃, 90℃/60℃, 120℃/70℃, 140℃/90℃, 160℃/90℃, 140℃/100℃ and 160℃/100℃. The lasttwo schedules were for superheated steam drying as the wet-bulb temperature was set at 100℃. Thecirculation velocity over the board surface was controlled at 4.2m·s^(-1). Two additional runs(90℃/60℃) using air velocities of 2.4 m·s^(-1) and 4.8 m·s^(-1) were performed to check theeffect of the circulation velocity. During drying, sample weight and temperatures at wood surfaceand different depths were continuously measured. Prom these measurements, changes in woodtemperature and moisture content were calculated and external heat-transfer coefficient wasdetermined for both the moist air and the superheated steam drying.
基金supported by the School of Graduate Studies and the Department of Nutrition and Dietetics of Universiti Putra Malaysia(Malaysia),in collaboration with the Graduate School of Life Science and System Engineering of Kyushu Institute of Technology(Japan).
文摘Background:Conventional drying using heated air oven is commonly used as a method for preserving the product but often affects the nutritional value,taste,and texture.However,the heat from the drying method can oxidize and destroy heat-sensitive compounds.Superheated steam(SHS)drying uses superheated steam instead of hot air or combustion gases in a direct dryer and was reported better at preserving the nutritional values of food products.Aim:To evaluate the effect of SHS drying on antioxidant properties of tea leaves.The study also compared SHS drying with conventional and freeze-drying methods.Results:Tea leaves dried using freeze drying retained the highest level of antioxidant properties compared to other drying methods.The leaves dried using SHS exhibited significantly higher radical scavenging activity,ORAC and FRAP values compared to oven drying method.At different drying temperatures(150℃and 175℃),oven dried leaves showed significantly higher(p<0.05)antioxidant properties than that of SHS dried ones.Tea leaves dried for 60,75,and 90 min using SHS showed significantly higher(p<0.05)FRAP and ORAC values,and also total phenolic content compared to oven dried tea leaves.Conclusion:Tea leaves dried using SHS drying method retained higher level of antioxidant properties compared to oven drying.The drying method also retained lower antioxidant properties as drying time increased.Further study involving SHS drying in food-related fields should be conducted to support its usefulness.
文摘Liquid vaporization under thermodynamic phase non-equilibrium condition at the gas-liquid interface is investigated over a wide range of fluid state typical of many liquid-fueled energy conversion systems. The validity of the phase-equilibrium assumption commonly used in the existing study of liquid vaporization is examined using molecular dynamics theories. The interfacial mass flow rates on both sides of the liquid surface are compared to the net vaporization rate through an order-of-magnitude analysis.Results indicated that the phase-equilibrium assumption holds valid at relatively high pressures and low temperatures,and for droplets with relatively large initial diameters(for example,larger than 10 μm for vaporizing oxygen droplets in gaseous hydrogen in the pressure range from 10 atm to the oxygen critical state). Droplet vaporization under superheated conditions is also explored using classical binary homogeneous nucleation theory,in conjunction with a real-fluid equation of state. It is found that the bubble nucleation rate is very sensitive to changes in saturation ratio and pressure;it increases by several orders of magnitude when either the saturation ratio or the pressure is slightly increased. The kinetic limit of saturation ratio decreases with increasing pressure,leading to reduced difference between saturation and superheat conditions. As a result,the influence of nonequilibrium conditions on droplet vaporization is lower at a higher pressure.