摘要
The dynamic viscosity of Al-Yb and Al-Ni-Yb superheated melts was measured using a torsional oscillation viscometer. The results show that the temperature dependence of viscosity fits the Arrhenius law well and the fitting factors are calculated. The amorphous ribbons of these alloys were produced by the melt spinning technique and the thermal properties were characterized by using a differential scanning calorimetry (DSC). E (the activation energy for viscous flow), which reflects the change rate of viscosity, has a good negative relation with the GFA in both Al-Yb and Al-Ni-Yb systems. However, there is no direct relation between liquidus viscosity (ηL) and GFA. The superheated fragility M can predict GFA in Al-Yb or Al-Ni-Yb alloy system.
The dynamic viscosity of Al-Yb and Al-Ni-Yb superheated melts was measured using a torsional oscillation viscometer. The results show that the temperature dependence of viscosity fits the Arrhenius law well and the fitting factors are calculated. The amorphous ribbons of these alloys were produced by the melt spinning technique and the thermal properties were characterized by using a differential scanning calorimetry (DSC). E (the activation energy for viscous flow), which reflects the change rate of viscosity, has a good negative relation with the GFA in both Al-Yb and Al-Ni-Yb systems. However, there is no direct relation between liquidus viscosity (ηL) and GFA. The superheated fragility M can predict GFA in Al-Yb or Al-Ni-Yb alloy system.
基金
supported by the National Basic Research Program of China (Grant No. 2007CB613901)
the National Natural Science Foundation of China (Grant Nos. 50831003 and 50871062)
the Natural Science Foundation of Shandong Province (Grant No. Z2008F08)