Silicon on insulator (SOI) technology permits a good solution to the miniaturization as the MOSFET size scales down. This paper is about to compare the electrical performance of nanoscale FD-SOI MOSFET at various gate...Silicon on insulator (SOI) technology permits a good solution to the miniaturization as the MOSFET size scales down. This paper is about to compare the electrical performance of nanoscale FD-SOI MOSFET at various gate lengths. The performance is compared and contrasted with the help of threshold voltage, subthreshold slope, on-state current and leakage current. Interestingly, by decreasing the gate length, the leakage current and on-state current are increased but the threshold voltage is decreased and the sub-threshold slope is degraded. Silvaco two-dimensional simulations are used to analyze the performance of the proposed structures.展开更多
With the need to improvement of speed of operation and the demand of low power MOSFET size scales down, in this paper, a 50 nm gate length n-type doped channel MOS (NMOS) is simulated using ATLAS packages of Silv...With the need to improvement of speed of operation and the demand of low power MOSFET size scales down, in this paper, a 50 nm gate length n-type doped channel MOS (NMOS) is simulated using ATLAS packages of Silvaco TCAD Tool so as to observe various electrical parameters at this gate length. The parameters under investigation are the threshold voltage, subthreshold slope, on-state current, leakage current and drain induced barrier lowering (DIBL) by varying channel doping concentration, drain and source doping concentration and gate oxide thickness.展开更多
Based on the observation that both subthreshold and gate leakage depend on transistors width, this paper introduces a feasible method to fast estimate leakage current in buffers. In simulating of leakage current with ...Based on the observation that both subthreshold and gate leakage depend on transistors width, this paper introduces a feasible method to fast estimate leakage current in buffers. In simulating of leakage current with swept transistor width, we found that gate leakage is not always a linear function of the device geometry. Subsequently, this paper presented the theoretical analysis and experimental evidence of this exceptional gate leakage behavior and developed a design methodology to devise a low-leakage and high-performance buffer with no penalty in area using this deviation.展开更多
A novel DOIND logic approach is proposed for domino logic, which reduces the leakage current with a minimum delay penalty. Simulation is performed at 70 nm technology node with supply voltage 1V for domino logic and D...A novel DOIND logic approach is proposed for domino logic, which reduces the leakage current with a minimum delay penalty. Simulation is performed at 70 nm technology node with supply voltage 1V for domino logic and DOIND logic based AND, OR, XOR and Half Adder circuits using the tanner EDA tool. Simulation results show that the proposed DOIND approach decreases the average leakage current by 68.83%, 66.6%, 77.86% and 74.34% for 2 input AND, OR, XOR and Half Adder respectively. The proposed approach also has 47.76% improvement in PDAP for the buffer circuit as compared to domino logic.展开更多
In this paper, a novel 10 Transistor Static Random Access Memory (SRAM) cell is proposed. Read and Write bit lines are decoupled in the proposed cell. Feedback loop-cutting with single bit line write scheme is employe...In this paper, a novel 10 Transistor Static Random Access Memory (SRAM) cell is proposed. Read and Write bit lines are decoupled in the proposed cell. Feedback loop-cutting with single bit line write scheme is employed in the 10 Transistor SRAM cell to reduce active power consumption during the write operation. Read access time and write access time are measured for proposed cell architecture based on Eldo SPICE simulation using TSMC based 90 nm Complementary Metal Oxide Semiconductor (CMOS) technology at various process corners. Leakage current measurements made on hold mode of operation show that proposed cell architecture is having 12.31 nano amperes as compared to 40.63 nano amperes of the standard 6 Transistor cell. 10 Transistor cell also has better performance in terms of leakage power as compared to 6 Transistor cell.展开更多
A new circuit technique for 65 nm technology is proposed in this paper for reducing the subthreshold and gate oxide leakage currents in idle and non idle mode of operation for footerless domino circuits. In this techn...A new circuit technique for 65 nm technology is proposed in this paper for reducing the subthreshold and gate oxide leakage currents in idle and non idle mode of operation for footerless domino circuits. In this technique a p-type and an n-type leakage controlled transistors (LCTs) are introduced between the pull-up and pull-down network and the gate of one is controlled by the source of the other. For any combination of input, one of the LCT will operate near its cut off region and will increase the resistance between supply voltage and ground resulting in reduced leakage current. Furthermore, the leakage current is suppressed at the output inverter circuit by inserting a transistor below the n-type transistor of the inverter offering more resistive path between supply voltage and ground. The proposed technique is applied on benchmark circuits reduction of active power consumption is observed from 10.9% to 44.76% at different temperature variations. For same benchmark circuits, operating at two clock modes and giving low and high inputs at 25℃ and 110℃ temperatures the maximum leakage power saving of 98.9% is achieved when compared to standard footerless domino logic circuits.展开更多
Silicon-on-insulator (SOI) CMOS technology is a very attractive option for implementing digital integrated circuits for low power applications. This paper presents migration of standby subthreshold leakage control tec...Silicon-on-insulator (SOI) CMOS technology is a very attractive option for implementing digital integrated circuits for low power applications. This paper presents migration of standby subthreshold leakage control technique from a bulk CMOS to SOI CMOS technology. An improved SOI CMOS technology based circuit technique for effective reduction of standby subthreshold leakage power dissipation is proposed in this paper. The proposed technique is validated through design and simulation of a one-bit full adder circuit at a temperature of 27℃, supply voltage, VDD of 0.90 V in 120 nm SOI CMOS technology. Existing standby subthreshold leakage control techniques in CMOS bulk technology are compared with the proposed technique in SOI CMOS technology. Both the proposed and existing techniques are also implemented in SOI CMOS technology and compared. Reduction in standby subthreshold leakage power dissipation by reduction factors of 54x and 45x foraone-bit full adder circuit was achieved using our proposed SOI CMOS technology based circuit technique in comparison with existing techniques such as MTCMOS technique and SCCMOS technique respectively in CMOS bulk technology. Dynamic power dissipation was also reduced significantly by using this proposed SOI CMOS technology based circuit technique. Standby subthreshold leakage power dissipation and dynamic power dissipation were also reduced significantly using the proposed circuit technique in comparison with other existing techniques, when all circuit techniques were implemented in SOI CMOS technology. All simulations were performed using Microwindver 3.1 EDA tool.展开更多
We have presented an analysis of the gate leakage current of the IP3 static random access memory (SRAM) cell structure when the cell is in idle mode(performs no data read/write operations) and active mode (perfor...We have presented an analysis of the gate leakage current of the IP3 static random access memory (SRAM) cell structure when the cell is in idle mode(performs no data read/write operations) and active mode (performs data read/write operations),along with the requirements for the overall standby leakage power,active write and read powers.A comparison has been drawn with existing SRAM cell structures,the conventional 6T,PP, P4 and P3 cells.At the supply voltage,V_(DD) = 0.8 V,a reduction of 98%,99%,92%and 94%is observed in the gate leakage current in comparison with the 6T,PP,P4 and P3 SRAM cells,respectively,while at V_(DD) = 0.7 V,it is 97%,98%,87%and 84%.A significant reduction is also observed in the overall standby leakage power by 56%〉, the active write power by 44%and the active read power by 99%,compared with the conventional 6T SRAM cell at V_(DD)= 0.8 V,with no loss in cell stability and performance with a small area penalty.The simulation environment used for this work is 45 nm deep sub-micron complementary metal oxide semiconductor(CMOS) technology,t_(ox) = 2.4 nm,K_(thn) = 0.22 V,K_(thp) = 0.224 V,V_(DD) = 0.7 V and 0.8 V,at T = 300 K.展开更多
In this paper, four new hybrid digital circuit design techniques, namely, hybrid multi-threshold CMOS complete stack technique, hybrid multi-threshold CMOS partial stack technique, hybrid super cutoff complete stack t...In this paper, four new hybrid digital circuit design techniques, namely, hybrid multi-threshold CMOS complete stack technique, hybrid multi-threshold CMOS partial stack technique, hybrid super cutoff complete stack technique and hybrid super cutoff partial stack technique, have been proposed to reduce the subthreshold leakage power dissipation in standby modes. Techniques available in literature are compared with our proposed hybrid circuit design techniques. Performance parameters such as subthreshold leakage power dissipation in active and standby modes, dynamic power dissipation and propagation delay, are compared using existing and proposed hybrid techniques for a two input AND gate. Reduction of subthreshold leakage power dissipation in standby mode is given more importance, in comparison with the other circuit design performance parameters. It is found that there is reduction in subthreshold leakage power dissipation in standby and active modes by 3.5× and 1.15× respectively using the proposed hybrid super cutoff complete stack technique as compared to the existing multi-threshold CMOS (MTCMOS) technique. Also a saving of 2.50× and 1.04× in subthreshold leakage power dissipation in standby and active modes respectively were observed using hybrid super cutoff complete stack technique as compared to the existing super cutoff CMOS (SCCMOS) technique. The proposed hybrid super cutoff stack technique proved to perform better in terms of subthreshold leakage power dissipation in standby mode in comparison with other techniques. Simulation results using Microwind EDA tool in 65 nm CMOS technology is provided in this paper.展开更多
A low leakage current subthreshold SRAM in 130 nm CMOS technology is proposed for ultra low voltage(200 mV) applications.Almost all of the previous subthreshold works ignore the leakage current in both active and st...A low leakage current subthreshold SRAM in 130 nm CMOS technology is proposed for ultra low voltage(200 mV) applications.Almost all of the previous subthreshold works ignore the leakage current in both active and standby modes.To minimize leakage,a self-adaptive leakage cut off scheme is adopted in the proposed design without any extra dynamic energy dissipation or performance penalty.Combined with buffering circuit and reconfigurable operation,the proposed design ensures both read and standby stability without deteriorating writability in the subthreshold region.Compared to the referenced subthreshold SRAM bitcell,the proposed bitcell shows:(1) a better critical state noise margin,and(2) smaller leakage current in both active and standby modes. Measurement results show that the proposed SRAM functions well at a 200 mV supply voltage with 0.13μW power consumption at 138 kHz frequency.展开更多
文摘Silicon on insulator (SOI) technology permits a good solution to the miniaturization as the MOSFET size scales down. This paper is about to compare the electrical performance of nanoscale FD-SOI MOSFET at various gate lengths. The performance is compared and contrasted with the help of threshold voltage, subthreshold slope, on-state current and leakage current. Interestingly, by decreasing the gate length, the leakage current and on-state current are increased but the threshold voltage is decreased and the sub-threshold slope is degraded. Silvaco two-dimensional simulations are used to analyze the performance of the proposed structures.
文摘With the need to improvement of speed of operation and the demand of low power MOSFET size scales down, in this paper, a 50 nm gate length n-type doped channel MOS (NMOS) is simulated using ATLAS packages of Silvaco TCAD Tool so as to observe various electrical parameters at this gate length. The parameters under investigation are the threshold voltage, subthreshold slope, on-state current, leakage current and drain induced barrier lowering (DIBL) by varying channel doping concentration, drain and source doping concentration and gate oxide thickness.
基金Supported by the National Natural Science Foundation of China(No.61271149)
文摘Based on the observation that both subthreshold and gate leakage depend on transistors width, this paper introduces a feasible method to fast estimate leakage current in buffers. In simulating of leakage current with swept transistor width, we found that gate leakage is not always a linear function of the device geometry. Subsequently, this paper presented the theoretical analysis and experimental evidence of this exceptional gate leakage behavior and developed a design methodology to devise a low-leakage and high-performance buffer with no penalty in area using this deviation.
文摘A novel DOIND logic approach is proposed for domino logic, which reduces the leakage current with a minimum delay penalty. Simulation is performed at 70 nm technology node with supply voltage 1V for domino logic and DOIND logic based AND, OR, XOR and Half Adder circuits using the tanner EDA tool. Simulation results show that the proposed DOIND approach decreases the average leakage current by 68.83%, 66.6%, 77.86% and 74.34% for 2 input AND, OR, XOR and Half Adder respectively. The proposed approach also has 47.76% improvement in PDAP for the buffer circuit as compared to domino logic.
文摘In this paper, a novel 10 Transistor Static Random Access Memory (SRAM) cell is proposed. Read and Write bit lines are decoupled in the proposed cell. Feedback loop-cutting with single bit line write scheme is employed in the 10 Transistor SRAM cell to reduce active power consumption during the write operation. Read access time and write access time are measured for proposed cell architecture based on Eldo SPICE simulation using TSMC based 90 nm Complementary Metal Oxide Semiconductor (CMOS) technology at various process corners. Leakage current measurements made on hold mode of operation show that proposed cell architecture is having 12.31 nano amperes as compared to 40.63 nano amperes of the standard 6 Transistor cell. 10 Transistor cell also has better performance in terms of leakage power as compared to 6 Transistor cell.
文摘A new circuit technique for 65 nm technology is proposed in this paper for reducing the subthreshold and gate oxide leakage currents in idle and non idle mode of operation for footerless domino circuits. In this technique a p-type and an n-type leakage controlled transistors (LCTs) are introduced between the pull-up and pull-down network and the gate of one is controlled by the source of the other. For any combination of input, one of the LCT will operate near its cut off region and will increase the resistance between supply voltage and ground resulting in reduced leakage current. Furthermore, the leakage current is suppressed at the output inverter circuit by inserting a transistor below the n-type transistor of the inverter offering more resistive path between supply voltage and ground. The proposed technique is applied on benchmark circuits reduction of active power consumption is observed from 10.9% to 44.76% at different temperature variations. For same benchmark circuits, operating at two clock modes and giving low and high inputs at 25℃ and 110℃ temperatures the maximum leakage power saving of 98.9% is achieved when compared to standard footerless domino logic circuits.
文摘Silicon-on-insulator (SOI) CMOS technology is a very attractive option for implementing digital integrated circuits for low power applications. This paper presents migration of standby subthreshold leakage control technique from a bulk CMOS to SOI CMOS technology. An improved SOI CMOS technology based circuit technique for effective reduction of standby subthreshold leakage power dissipation is proposed in this paper. The proposed technique is validated through design and simulation of a one-bit full adder circuit at a temperature of 27℃, supply voltage, VDD of 0.90 V in 120 nm SOI CMOS technology. Existing standby subthreshold leakage control techniques in CMOS bulk technology are compared with the proposed technique in SOI CMOS technology. Both the proposed and existing techniques are also implemented in SOI CMOS technology and compared. Reduction in standby subthreshold leakage power dissipation by reduction factors of 54x and 45x foraone-bit full adder circuit was achieved using our proposed SOI CMOS technology based circuit technique in comparison with existing techniques such as MTCMOS technique and SCCMOS technique respectively in CMOS bulk technology. Dynamic power dissipation was also reduced significantly by using this proposed SOI CMOS technology based circuit technique. Standby subthreshold leakage power dissipation and dynamic power dissipation were also reduced significantly using the proposed circuit technique in comparison with other existing techniques, when all circuit techniques were implemented in SOI CMOS technology. All simulations were performed using Microwindver 3.1 EDA tool.
文摘We have presented an analysis of the gate leakage current of the IP3 static random access memory (SRAM) cell structure when the cell is in idle mode(performs no data read/write operations) and active mode (performs data read/write operations),along with the requirements for the overall standby leakage power,active write and read powers.A comparison has been drawn with existing SRAM cell structures,the conventional 6T,PP, P4 and P3 cells.At the supply voltage,V_(DD) = 0.8 V,a reduction of 98%,99%,92%and 94%is observed in the gate leakage current in comparison with the 6T,PP,P4 and P3 SRAM cells,respectively,while at V_(DD) = 0.7 V,it is 97%,98%,87%and 84%.A significant reduction is also observed in the overall standby leakage power by 56%〉, the active write power by 44%and the active read power by 99%,compared with the conventional 6T SRAM cell at V_(DD)= 0.8 V,with no loss in cell stability and performance with a small area penalty.The simulation environment used for this work is 45 nm deep sub-micron complementary metal oxide semiconductor(CMOS) technology,t_(ox) = 2.4 nm,K_(thn) = 0.22 V,K_(thp) = 0.224 V,V_(DD) = 0.7 V and 0.8 V,at T = 300 K.
文摘In this paper, four new hybrid digital circuit design techniques, namely, hybrid multi-threshold CMOS complete stack technique, hybrid multi-threshold CMOS partial stack technique, hybrid super cutoff complete stack technique and hybrid super cutoff partial stack technique, have been proposed to reduce the subthreshold leakage power dissipation in standby modes. Techniques available in literature are compared with our proposed hybrid circuit design techniques. Performance parameters such as subthreshold leakage power dissipation in active and standby modes, dynamic power dissipation and propagation delay, are compared using existing and proposed hybrid techniques for a two input AND gate. Reduction of subthreshold leakage power dissipation in standby mode is given more importance, in comparison with the other circuit design performance parameters. It is found that there is reduction in subthreshold leakage power dissipation in standby and active modes by 3.5× and 1.15× respectively using the proposed hybrid super cutoff complete stack technique as compared to the existing multi-threshold CMOS (MTCMOS) technique. Also a saving of 2.50× and 1.04× in subthreshold leakage power dissipation in standby and active modes respectively were observed using hybrid super cutoff complete stack technique as compared to the existing super cutoff CMOS (SCCMOS) technique. The proposed hybrid super cutoff stack technique proved to perform better in terms of subthreshold leakage power dissipation in standby mode in comparison with other techniques. Simulation results using Microwind EDA tool in 65 nm CMOS technology is provided in this paper.
基金supported by the China State-Funded Study Abroad Program for High-Level Universities
文摘A low leakage current subthreshold SRAM in 130 nm CMOS technology is proposed for ultra low voltage(200 mV) applications.Almost all of the previous subthreshold works ignore the leakage current in both active and standby modes.To minimize leakage,a self-adaptive leakage cut off scheme is adopted in the proposed design without any extra dynamic energy dissipation or performance penalty.Combined with buffering circuit and reconfigurable operation,the proposed design ensures both read and standby stability without deteriorating writability in the subthreshold region.Compared to the referenced subthreshold SRAM bitcell,the proposed bitcell shows:(1) a better critical state noise margin,and(2) smaller leakage current in both active and standby modes. Measurement results show that the proposed SRAM functions well at a 200 mV supply voltage with 0.13μW power consumption at 138 kHz frequency.