针对当前板类结构应力检测方法的不足,提出一种基于非线性声弹性效应检测应力的方法.该方法利用声弹性运动方程和Rayleigh-Lamb频率方程,绘制了4 mm Q235钢板中S0、A0与SH0模态的频散曲线与波结构图,并对不同激励频率下上述模态的群速...针对当前板类结构应力检测方法的不足,提出一种基于非线性声弹性效应检测应力的方法.该方法利用声弹性运动方程和Rayleigh-Lamb频率方程,绘制了4 mm Q235钢板中S0、A0与SH0模态的频散曲线与波结构图,并对不同激励频率下上述模态的群速度相对变化率进行了理论计算与有限元模拟仿真.结果表明:S0模态的声弹性效应较A0模态与SH0模态更敏感,且声弹性效应最敏感的激励频率为频散较弱的90~150 kHz;声弹性效应与所激励模态的波结构有关,沿应力方向面内位移越大声弹性效应越显著.展开更多
A numerical procedure to determine the equivalent hydrodynamic dispersion coefficients and Péclet number(Pe) of a fractured rock is presented using random walk particle tracking method.The geometrical effects o...A numerical procedure to determine the equivalent hydrodynamic dispersion coefficients and Péclet number(Pe) of a fractured rock is presented using random walk particle tracking method.The geometrical effects of fracture system on hydrodynamic dispersion are studied.The results obtained from the proposed method agree well with those of empirical models,which are the scale-dependent hydrodynamic dispersion coefficients in an asymptotic or exponential form.A variance case is added to investigate the influence of longitudinal hydrodynamic dispersion in individual fractures on the macro-hydrodynamic dispersion at the fracture network scale,and its influence is demonstrated with a verification example.In addition,we investigate the influences of directional flow and stress conditions on the behavior of hydrodynamic dispersion in fracture networks.The results show that the magnitudes of the hydrodynamic dispersion coefficients are relatively smaller when the flow direction is parallel to the dip directions of fracture sets.Compressive stresses significantly reduce hydrodynamic dispersion.However,the remaining questions are:(1) whether the deformed fracture network under high stress conditions may make the scale-dependent hydrodynamic dispersion coefficients have asymptotic or exponential forms,and(2) what the conditions for existence of a well-defined equivalent hydrodynamic dispersion tensor are.They need to be further investigated.展开更多
Antimony(Sb)-ba sed anode materials are feasible candidates for sodium-ion batteries(SIBs) due to their high theoretical specific capacity and excellent electrical conductivity.However,they still suffer from volume di...Antimony(Sb)-ba sed anode materials are feasible candidates for sodium-ion batteries(SIBs) due to their high theoretical specific capacity and excellent electrical conductivity.However,they still suffer from volume distortion,structural collapse,and ionic conduction interruption upon cycling.Herein,a hierarchical array-like nanofiber structure was designed to address these limitations by combining architecture engineering and anion tuning strategy,in which SbPO_(4-x) with oxygen vacancy nanosheet arrays are anchored on the surface of interwoven carbon nanofibers(SbPO_(4-x)@CNFs).In particular,bulky PO_(4)^(3-) anions mitigate the large volume distortion and generate Na_(3)PO_(4) with high ionic conductivity,collectively improving cyclic stability and ionic transport efficiency.The abundant oxygen vacancies substantially boost the intrinsic electronic conductivity of SbPO_4,further accelerating the reaction dynamics.In addition,hierarchical fibrous structures provide abundant active sites,construct efficient conducting networks,and enhance the electron/ion transport capacity.Benefiting from the advanced structural design,the SbPO_(4-x)@CNFs electrodes exhibit outstanding cycling stability(1000 cycles at 1.0 A g^(-1) with capacity decay of 0.05% per cycle) and rapid sodium storage performance(293.8 mA h g^(-1) at 5.0 A g^(-1)).Importantly,systematic in-/ex-situ techniques have revealed the "multi-step conversion-alloying" reaction process and the "battery-capacitor dual-mode" sodium-storage mechanism.This work provides valuable insights into the design of anode materials for advanced SIBs with elevated stability and superior rate performance.展开更多
文摘针对当前板类结构应力检测方法的不足,提出一种基于非线性声弹性效应检测应力的方法.该方法利用声弹性运动方程和Rayleigh-Lamb频率方程,绘制了4 mm Q235钢板中S0、A0与SH0模态的频散曲线与波结构图,并对不同激励频率下上述模态的群速度相对变化率进行了理论计算与有限元模拟仿真.结果表明:S0模态的声弹性效应较A0模态与SH0模态更敏感,且声弹性效应最敏感的激励频率为频散较弱的90~150 kHz;声弹性效应与所激励模态的波结构有关,沿应力方向面内位移越大声弹性效应越显著.
基金the financial supports from Swedish Nuclear Fuel and Waste Management Co.(SKB) through the DECOVALEX-2011 project
文摘A numerical procedure to determine the equivalent hydrodynamic dispersion coefficients and Péclet number(Pe) of a fractured rock is presented using random walk particle tracking method.The geometrical effects of fracture system on hydrodynamic dispersion are studied.The results obtained from the proposed method agree well with those of empirical models,which are the scale-dependent hydrodynamic dispersion coefficients in an asymptotic or exponential form.A variance case is added to investigate the influence of longitudinal hydrodynamic dispersion in individual fractures on the macro-hydrodynamic dispersion at the fracture network scale,and its influence is demonstrated with a verification example.In addition,we investigate the influences of directional flow and stress conditions on the behavior of hydrodynamic dispersion in fracture networks.The results show that the magnitudes of the hydrodynamic dispersion coefficients are relatively smaller when the flow direction is parallel to the dip directions of fracture sets.Compressive stresses significantly reduce hydrodynamic dispersion.However,the remaining questions are:(1) whether the deformed fracture network under high stress conditions may make the scale-dependent hydrodynamic dispersion coefficients have asymptotic or exponential forms,and(2) what the conditions for existence of a well-defined equivalent hydrodynamic dispersion tensor are.They need to be further investigated.
基金financially supported by the National Natural Science Foundation of China(52102223,51920105004)。
文摘Antimony(Sb)-ba sed anode materials are feasible candidates for sodium-ion batteries(SIBs) due to their high theoretical specific capacity and excellent electrical conductivity.However,they still suffer from volume distortion,structural collapse,and ionic conduction interruption upon cycling.Herein,a hierarchical array-like nanofiber structure was designed to address these limitations by combining architecture engineering and anion tuning strategy,in which SbPO_(4-x) with oxygen vacancy nanosheet arrays are anchored on the surface of interwoven carbon nanofibers(SbPO_(4-x)@CNFs).In particular,bulky PO_(4)^(3-) anions mitigate the large volume distortion and generate Na_(3)PO_(4) with high ionic conductivity,collectively improving cyclic stability and ionic transport efficiency.The abundant oxygen vacancies substantially boost the intrinsic electronic conductivity of SbPO_4,further accelerating the reaction dynamics.In addition,hierarchical fibrous structures provide abundant active sites,construct efficient conducting networks,and enhance the electron/ion transport capacity.Benefiting from the advanced structural design,the SbPO_(4-x)@CNFs electrodes exhibit outstanding cycling stability(1000 cycles at 1.0 A g^(-1) with capacity decay of 0.05% per cycle) and rapid sodium storage performance(293.8 mA h g^(-1) at 5.0 A g^(-1)).Importantly,systematic in-/ex-situ techniques have revealed the "multi-step conversion-alloying" reaction process and the "battery-capacitor dual-mode" sodium-storage mechanism.This work provides valuable insights into the design of anode materials for advanced SIBs with elevated stability and superior rate performance.